高中数学:这个等式怎么证明?
4个回答
展开全部
设S=1^2+2^2+....+n^2
(n+1)^3-n^3 = 3n^2+3n+1
n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1
...
..
...
2^3-1^3 = 3*1^2+3*1+1
把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n
所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)
再以n-1代n
(n+1)^3-n^3 = 3n^2+3n+1
n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1
...
..
...
2^3-1^3 = 3*1^2+3*1+1
把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n
所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)
再以n-1代n
更多追问追答
追问
后面的3次方的配方怎么配?我做到 S=(2n^3+3n^2+2)/6 就不会做了
追答
结论是没有常数的 很明显你错了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来也~~~~~要好评哦
an=n^2:
已知,(n+1)^3=n^3+3n^2+3n+1
所以 (n+1)^3-n^3=3n^2+3n+1
依次有n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
(n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1
(n-2)^3-(n-3)^3=3(n-3)^2+3(n-3)+1
………………………………
3^3-2^3=3*2^2+3*2+1
2^3-1^3=3*1^2+3*1+1
以上的n个等式的两边分别相加得到:
(n+3)^3-1
=3(1^2+2^2+3^2+……+n^2)
+3(1+2+3+……+n)
+(1+1+……+1)
所以(n+1)^3-1=3(1^2+2^2+……+n^2)+3n(n+1)/2+n
因此 1^2+2^2+3^2+……+n^2=[(n^3+3n^2+3n)-3n(n+1)/2-n]/3
=(2n^3+3n^2+n)/6
=n(n+1)(2n+1)/6
an=n^2:
已知,(n+1)^3=n^3+3n^2+3n+1
所以 (n+1)^3-n^3=3n^2+3n+1
依次有n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
(n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1
(n-2)^3-(n-3)^3=3(n-3)^2+3(n-3)+1
………………………………
3^3-2^3=3*2^2+3*2+1
2^3-1^3=3*1^2+3*1+1
以上的n个等式的两边分别相加得到:
(n+3)^3-1
=3(1^2+2^2+3^2+……+n^2)
+3(1+2+3+……+n)
+(1+1+……+1)
所以(n+1)^3-1=3(1^2+2^2+……+n^2)+3n(n+1)/2+n
因此 1^2+2^2+3^2+……+n^2=[(n^3+3n^2+3n)-3n(n+1)/2-n]/3
=(2n^3+3n^2+n)/6
=n(n+1)(2n+1)/6
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询