已知函数F(x)=x^2+1(x≥0), =1(x<0), 则满足不等式f(1-x^2)>f(2x)的x的取值范围为?

 我来答
lianglww123
2013-11-12 · TA获得超过3.5万个赞
知道小有建树答主
回答量:6229
采纳率:0%
帮助的人:69.5万
展开全部
F(x)={x^2+1(x≥0),
{1(x<0),
F(x)是分段函数,在[0,+∞)上递增
在(-∞,0)上为常函数,值为1,且F(0)=1

是需用分成两类讨论:
不等式f(1-x^2)>f(2x)成立的情况有

(1)1-x²和2x都在增区间[0,+∞)内,则
{1-x²≥0, ①
{ 2x≥0 ②
{1-x²>2x ③
①==>x²-1≤0 ==> -1≤x≤1
②==> x≥0
③==> x²+2x-1<0 ==>-1-√2<x<-1+√2
①②③取交集:0≤x<√2-1

(2)1-x²在区间(0,+∞)内,2x在(-∞,0)内
此时,f(1-x²)=x²+1>1,f(2x)=1,不等式成立
∴{1-x²>0,且2x<0 解得 x<-1

【1-x²,和2x不能同处于(-∞,0),此时二者的函数值均为1】

综上所述,满足不等式的x的取值范围为
(-∞,-1)U[0,√2-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式