2个回答
展开全部
1/(2²-1)+1/(4²-1)+1/(6²-1)+......+1/(100²-1)
=1/[(2-1)(2+1)]+1/[(4-1)(4+1)]+1/[(6-1)(6+1)]+......+1/[(100-1)(100+1)]
=1/(1*3)+1/(3*5)+1/(5*7)+......+1/(99*101)
=[2/(1*3)+2/(3*5)+2/(5*7)+......+2/(99*101)]/2
=[(1-1/3)+(1/3-1/5)+(1/5-1/7)+......+(1/99-1/101)]/2
=(1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101)/2
=(1-1/101)/2
=(100/101)/2
=50/101
=1/[(2-1)(2+1)]+1/[(4-1)(4+1)]+1/[(6-1)(6+1)]+......+1/[(100-1)(100+1)]
=1/(1*3)+1/(3*5)+1/(5*7)+......+1/(99*101)
=[2/(1*3)+2/(3*5)+2/(5*7)+......+2/(99*101)]/2
=[(1-1/3)+(1/3-1/5)+(1/5-1/7)+......+(1/99-1/101)]/2
=(1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101)/2
=(1-1/101)/2
=(100/101)/2
=50/101
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询