用3个三角形最多可以把平面分成几部分?10个三角形呢?
1个回答
展开全部
设n个三角形最多将平面分成an个部分。
n=1时,a1=2;
n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。
n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即: a3=2+2×3+4×3。
……
一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故
an=2+2×3+4×3+…+2(n-1)×3
=2+〔2+4+…+2(n-1)〕×3
=2+3n(n-1)=3n^2-3n+2。
特别地,当n=10时,a10=3×100-3×10+2=272,即10个三角形最多把平面分成272个部分。
n=1时,a1=2;
n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。
n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即: a3=2+2×3+4×3。
……
一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故
an=2+2×3+4×3+…+2(n-1)×3
=2+〔2+4+…+2(n-1)〕×3
=2+3n(n-1)=3n^2-3n+2。
特别地,当n=10时,a10=3×100-3×10+2=272,即10个三角形最多把平面分成272个部分。
追问
有没有简便一些的方法?谢谢!
没有就算了,很感谢您!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询