如图,在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,AD=1,AB=5,BC=4,点P是线段AB上一个动点,点E是CD的中
点,延长PE至F,使EF=PE.(1)判定四边形PCFD的形状;(2)当AP的长为何值时,四边形PCFD是矩形;(3)求四边形PCFD的周长的最小值....
点,延长PE至F,使EF=PE.
(1)判定四边形PCFD的形状;
(2)当AP的长为何值时,四边形PCFD是矩形;
(3)求四边形PCFD的周长的最小值. 展开
(1)判定四边形PCFD的形状;
(2)当AP的长为何值时,四边形PCFD是矩形;
(3)求四边形PCFD的周长的最小值. 展开
2个回答
展开全部
解:(1)∵点E是CD的中点,即EC=DE,
又∵EF=PE,
∴四边形PCFD为平行四边形;
(2)设AP=x,
∵在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,
∴△APD∽△BCP.
∴x:4=1:(5-x).解得x1=1,x2=4;
答;当AP的长为1或4时,四边形PCFD是矩形;
(3)延长DA到G,使AG=AD、当点G、P、C共线时CP+PD最小,最小值为GC
GC=PD+PC,
∵∠A=∠B=90°,AD=1,AB=5,BC=4,
∴PD= 2 ,PC=4 √2 ,
∴GC=5 √2 .
∴四边形PCFD的周长的最小值为10√ 2 .
又∵EF=PE,
∴四边形PCFD为平行四边形;
(2)设AP=x,
∵在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,
∴△APD∽△BCP.
∴x:4=1:(5-x).解得x1=1,x2=4;
答;当AP的长为1或4时,四边形PCFD是矩形;
(3)延长DA到G,使AG=AD、当点G、P、C共线时CP+PD最小,最小值为GC
GC=PD+PC,
∵∠A=∠B=90°,AD=1,AB=5,BC=4,
∴PD= 2 ,PC=4 √2 ,
∴GC=5 √2 .
∴四边形PCFD的周长的最小值为10√ 2 .
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询