因式分解怎么做 怎么分
2个回答
展开全部
因式分解
因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。
含义
因式分解的定义和主要方法常规因式分解主要公式 定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中因式分解法的重要步骤。
方法
因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意四原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)
归纳方法:
1.提公因式法。
2.运用公式法。
3.拼凑法。
4.组合分解法。
5.十字相乘法。
6.双十字相乘法。
7.配方法。
8.拆项补项法。
9.换元法。
10.长除法。
11.求根法。
12.图象法。
13.主元法。
14.待定系数法。
15.特殊值法。
16.因式定理法。
分解步骤
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”
四个注意
因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。
这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。
考试时应注意:
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。
分解公式
平方差公式
(a+b)(a-b)=a2-b2
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
立方和(差)
a3-b3=(a-b)(a2+ab+b2)
a3+b3=(a+b)(a2-ab+b2)
十字相乘公式
十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
(x+a)(x+b)=x2+(a+b)x+ab
因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。
含义
因式分解的定义和主要方法常规因式分解主要公式 定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中因式分解法的重要步骤。
方法
因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意四原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)
归纳方法:
1.提公因式法。
2.运用公式法。
3.拼凑法。
4.组合分解法。
5.十字相乘法。
6.双十字相乘法。
7.配方法。
8.拆项补项法。
9.换元法。
10.长除法。
11.求根法。
12.图象法。
13.主元法。
14.待定系数法。
15.特殊值法。
16.因式定理法。
分解步骤
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”
四个注意
因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。
这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。
考试时应注意:
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。
分解公式
平方差公式
(a+b)(a-b)=a2-b2
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
立方和(差)
a3-b3=(a-b)(a2+ab+b2)
a3+b3=(a+b)(a2-ab+b2)
十字相乘公式
十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
(x+a)(x+b)=x2+(a+b)x+ab
展开全部
1.提取公因式
这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
这个很实用,但用起来不容易.
在无法用以上的方法进行分解时,可以用下十字相乘法.
例子:x^2+5x+6
首先观察,有二次项,一次项和常数项,可以采用十字相乘法.
一次项系数为1.所以可以写成1*1
常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)
然后这样排列
1 - 2
1 - 3
(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)
然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)
我再写几个式子,楼主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)
其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.
顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)
这些方法一般在最高次为二次时适用!
这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
这个很实用,但用起来不容易.
在无法用以上的方法进行分解时,可以用下十字相乘法.
例子:x^2+5x+6
首先观察,有二次项,一次项和常数项,可以采用十字相乘法.
一次项系数为1.所以可以写成1*1
常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)
然后这样排列
1 - 2
1 - 3
(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)
然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)
我再写几个式子,楼主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)
其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.
顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)
这些方法一般在最高次为二次时适用!
追问
谢谢咯
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询