设等差数列{an}的前n项和为Sn,已知 a3=12,S12>0,s13<0, (1)求公差d的取
设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,s13<0,(1)求公差d的取值范围(2)问前几项的和最大,并说明理由...
设等差数列{an}的前n项和为Sn,已知 a3=12,S12>0,s13<0, (1)求公差d的取值范围(2)问前几项的和最大,并说明理由
展开
1个回答
展开全部
(1)S12=12a1+12×(12-1)/2•d>0,
S13=13a1+13×(13-1)/2•d<0
2a1+11d>0①
a1+6d<0②
a3=12,得a1=12-2d③,
将③式分别代①、②式,
24+7d>0
3+d<0
∴-24/7<d<-3.
(2)由d<0可知a1>a2>a3>…>a12>a13.
因此,若在1≤n≤12中存在自然数n,
an>0,an+1<0,
Sn就是S1,S2,,S12中的最大值.
S12>0 S13<0
a1+5d>-d/2>0 a1+6d<0
a6>0 a7<0
故在S1,S2,…,S12中S6的值最大.
S13=13a1+13×(13-1)/2•d<0
2a1+11d>0①
a1+6d<0②
a3=12,得a1=12-2d③,
将③式分别代①、②式,
24+7d>0
3+d<0
∴-24/7<d<-3.
(2)由d<0可知a1>a2>a3>…>a12>a13.
因此,若在1≤n≤12中存在自然数n,
an>0,an+1<0,
Sn就是S1,S2,,S12中的最大值.
S12>0 S13<0
a1+5d>-d/2>0 a1+6d<0
a6>0 a7<0
故在S1,S2,…,S12中S6的值最大.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询