第19题,高中数学,求高手解答,要详细步骤!谢了!

硪丨暧恋
2013-10-03 · TA获得超过8979个赞
知道大有可为答主
回答量:5336
采纳率:93%
帮助的人:2133万
展开全部
(1)
3-2x≥0
x≤3/2
(2)
若a<0
则ax是减函数
-ax是增函数
3-ax是增函数
所以根号(3-ax)是增函数
此时a-1<0,所以根号(3-ax)/(a-1)是减函数
成立

若a=0,f(x)=根号3/(a-1),是个常数,不是减函数

若0<a<1
则ax是增函数
-ax是减函数
3-ax是减函数
所以根号(3-ax)是减函数
此时a-1<0,所以根号(3-ax)/(a-1)是增函数
不合题意

若a>1
则ax是增函数
-ax是减函数
3-ax是减函数
所以根号(3-ax)是减函数
此时a-1>0,所以根号(3-ax)/(a-1)是减函数
定义域
3-ax>=0,ax<=3
x<=3/a
因为0<x<=1
所以必须3/a>=1,a<=3
(也可以这样想a>1,3-a*1≥0)
所以a<0或1<a<=3
匿名用户
2013-10-03
展开全部
a=2,定义域是3-2x>=0,即有x<=3/2

2.
令在定义域内的x1>x2
由于是减函数,所以
f(x1)-f(x2)<0.带入f(x)=√(3-ax)/(a-1)
[√(3-ax1)-√(3-ax2)]/(a-1)<0
下面我们对a进行分类讨论
①a>1时
a-1>0,要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)<√(3-ax2)因为3-ax1<3-ax2在a>1时恒成立
所以,只需讨论根号下的数大于0这个限制条件
解得a∈(0,3]
②a<1时,a-1<0
要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)>√(3-ax2),3-ax1>3-ax2在a<0时成立,
且a<0时,定义域内的x可使函数恒有意义

综上所述,a的取值范围是
(-∞,0)∪(1,3]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式