如图,△ABC中,AD⊥BC于D,∠B=2∠C. (1)求证:DC=BD+AB; (2)当点E是BC的中点时,求证:AB=2DE。
2个回答
展开全部
(1)延长CB到E,使得BE=AB,连结AE
则由于△ABE是等腰三角形,所以∠E=∠BAE=1AEC/2 ∠ABD = ∠C
在△AED和△ACD中,∠E=∠C,∠ADE=∠ADC=90°,AD为公共边
所以 △AED≌△ACD
所以 CD=ED=BD+BE=BD+AB
(2)证明:在三角形中有大角对大边,∵∠B=2∠C ∴AC>AB
延长CB到P使CD=DP,连接AP,又∵AD垂直于BC于D,∴AD是CP的垂直平分线,∴∠C=∠APC,∵∠B=2∠C=∠APC+∠BAP
∴∠APC=∠BAP
∴AB=BP
∵E为BC中点
∴CE=EB=BD+DE
∵CD=PD即BP+BD=DE+CE
∴BP+BD=DE+BD+DE
∴BP=2DE
∴AB=2DE
则由于△ABE是等腰三角形,所以∠E=∠BAE=1AEC/2 ∠ABD = ∠C
在△AED和△ACD中,∠E=∠C,∠ADE=∠ADC=90°,AD为公共边
所以 △AED≌△ACD
所以 CD=ED=BD+BE=BD+AB
(2)证明:在三角形中有大角对大边,∵∠B=2∠C ∴AC>AB
延长CB到P使CD=DP,连接AP,又∵AD垂直于BC于D,∴AD是CP的垂直平分线,∴∠C=∠APC,∵∠B=2∠C=∠APC+∠BAP
∴∠APC=∠BAP
∴AB=BP
∵E为BC中点
∴CE=EB=BD+DE
∵CD=PD即BP+BD=DE+CE
∴BP+BD=DE+BD+DE
∴BP=2DE
∴AB=2DE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询