这道题哪位大神帮我解答一下,谢谢了。
1个回答
展开全部
延长AF,AG与直线BC相交于M、N,
三角形ABM中,BF垂直AM,BF平分角ABM,
三角形ABM等到腰,AB=BM,F是AB中点,
同理,在三角形ACN中AC=CN,G是AN中点,
GF是三角形ANM中位线,
GF=1/2(MN)
=1/2(BM+BC+CN)
=1/2(AB+BC+CA)
2.
FG=1/2(AC+AB-BC)。
当AB边最长,
在三角形ACN中,AC=CN,G是AN中点,
在三角形ABM中,AB=BM,F是AM中点,
MN=CN+CM=AC+(BM-BC)=AC+AB-BC,
当BC>AB>AC时,
MN=BM-BN=AB-BN=AB-(BC-AC)=AB+BC-AC,
FG=1/2MN=1/2(AC+AB-BC)。
3.
AB=BM,F是AM中点,
AC=CN,G是AN中点,
FG=1/2MN=1/2(AC+BC-AB)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询