六年级奥数行程问题
1,有一艘轮船从甲港到乙港,以原速速行驶40小时后因机器故障,停航修了6小时,以后乙每小时减速3.5千米的速度继续航行,因此比预定时间迟了26小时到达,如果开始时就以修理...
1, 有一艘轮船从甲港到乙港,以原速速行驶40小时后因机器故障,停航修了6小时,以后乙每小时减速3.5千米的速度继续航行,因此比预定时间迟了26小时到达,如果开始时就以修理后的速度行驶,那么,比实际到达的时间还晚2小时,求甲,乙两港间的距离,
2, 某公共汽车线路中间有10个站,车有快车及慢车两种,快车车速是慢车车速的1.2倍,慢车每站都停,快车则只停靠中间1个站,每站停留时间都是3分钟,当某次慢车发出40分钟后,快车从同一始发站开出,两车恰好同时到达终点,问快车从起点到终点共用多少时间 展开
2, 某公共汽车线路中间有10个站,车有快车及慢车两种,快车车速是慢车车速的1.2倍,慢车每站都停,快车则只停靠中间1个站,每站停留时间都是3分钟,当某次慢车发出40分钟后,快车从同一始发站开出,两车恰好同时到达终点,问快车从起点到终点共用多少时间 展开
展开全部
1本题超纲,也可能数据有误。
较麻烦可用方程,假设原速度为每小时V,原计划T小时到达,则全程为VT
按开始时就以修理后的速度行驶,那么,比实际到达的时间还晚2小时,全程为(V-3.5)(T+2)
所以VT=(V-3.5)(T+2) 化简得V=1.75T+3.5 (1)
机器故障后行驶了T-40+26-6=T-20小时,
机器故障后行驶距离为V-3.5+V-3.5×2+。。。+V-3.5×(T-20)=V(T-20)-1.75(T-20)(T-19)
所以有全程VT=40V+V(T-20)-1.75(T-20)(T-19) 化简得 V =0.0875T^2-3.4125*T+33.25 (2)
(1)(2)联解可得T=[59±根号(2121)]/2
因T>40 所以T=[59+根号(2121)]/2 全程VT=[20433+427根号(2121)]/8
2.不计停站时间,快车行驶全程比慢车少用40-(10-1)×3=13分钟
所以快车行驶全程(不计停站时间)所费时间为13÷(1.2-1)=65分钟
加上中间站停车3分钟,快车行驶全程时间为65+3=68分钟
较麻烦可用方程,假设原速度为每小时V,原计划T小时到达,则全程为VT
按开始时就以修理后的速度行驶,那么,比实际到达的时间还晚2小时,全程为(V-3.5)(T+2)
所以VT=(V-3.5)(T+2) 化简得V=1.75T+3.5 (1)
机器故障后行驶了T-40+26-6=T-20小时,
机器故障后行驶距离为V-3.5+V-3.5×2+。。。+V-3.5×(T-20)=V(T-20)-1.75(T-20)(T-19)
所以有全程VT=40V+V(T-20)-1.75(T-20)(T-19) 化简得 V =0.0875T^2-3.4125*T+33.25 (2)
(1)(2)联解可得T=[59±根号(2121)]/2
因T>40 所以T=[59+根号(2121)]/2 全程VT=[20433+427根号(2121)]/8
2.不计停站时间,快车行驶全程比慢车少用40-(10-1)×3=13分钟
所以快车行驶全程(不计停站时间)所费时间为13÷(1.2-1)=65分钟
加上中间站停车3分钟,快车行驶全程时间为65+3=68分钟
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题 :此题描述有些不清楚。在停修后,船是每小时都要减少3.5,还是只在维修后的第一个小时减少3.5,以后每一个小时依次递减3.5呢?我的推理是每小时都要递减,不知对不对?(如果是这样的,我再做些题)
第二题:设 : V甲=1.2V乙;全程为S。根据题意可列出方程
S/ V甲 +3 +40 = S/ V乙 +30 ,可得: S = 13*5 V甲 , S/ V甲=45
最后,得到快车全程用时为 45 +3 =48分钟。
第二题:设 : V甲=1.2V乙;全程为S。根据题意可列出方程
S/ V甲 +3 +40 = S/ V乙 +30 ,可得: S = 13*5 V甲 , S/ V甲=45
最后,得到快车全程用时为 45 +3 =48分钟。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询