高一函数题,求大神指教
已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-af(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函...
已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函数。
答案“假设存在实数a,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
f(x)=x²+1
g(x)=f[f(x)]=[f(x)]²+1=(x²+1)²+1=x^4+2x²+2
G(x)=g(x)-af(x)= x^4+2x²+2-a(x²+1)=x^4+(2-a)x²+2-a
函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成,
易知,函数t=x²在(-∞,0)上为减函数,
要使G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
则函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
∴-(2-a)/2=1,
2-a= -2,
a=4,
故存在a=4,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
为什么函数u在(0,1)为减函数,在(1,+oo)为增函数?求指教 展开
答案“假设存在实数a,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
f(x)=x²+1
g(x)=f[f(x)]=[f(x)]²+1=(x²+1)²+1=x^4+2x²+2
G(x)=g(x)-af(x)= x^4+2x²+2-a(x²+1)=x^4+(2-a)x²+2-a
函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成,
易知,函数t=x²在(-∞,0)上为减函数,
要使G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
则函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
∴-(2-a)/2=1,
2-a= -2,
a=4,
故存在a=4,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
为什么函数u在(0,1)为减函数,在(1,+oo)为增函数?求指教 展开
展开全部
注意这句话:函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成
函数t=x² 中 x在(-∞,-1)增大过程中, t在(+∞,1)减小,若函数u在(1,+∞)上为增函数的话,则在(+∞,1)即为减函数 (看定义域的变化方向),最终推到G(x)中x在(-∞,-1)为减函数
函数t=x² 中 x在(-∞,-1)增大过程中, t在(+∞,1)减小,若函数u在(1,+∞)上为增函数的话,则在(+∞,1)即为减函数 (看定义域的变化方向),最终推到G(x)中x在(-∞,-1)为减函数
更多追问追答
追问
我是这样理解的,因为u的对称抽a-2除2,因为t≥0所以函数u定义域为0到正无穷,因为开口向上,所以0到a-2除2递减,a-2除2递增,复合函数不是要去两函数单调性的交集么,根据同增异减,所以推出不存在
追答
最终问的是Gx的单调性
x从-∞→-1 时 t从+∞→1 注意不是从1→+∞ 所以t函数(-∞→-1)递减 ,若控制u函数在+∞→1 递减(此时u函数1→+∞为增函数,注意定义域的变化方向),就可实现符合函数G(x)在-∞→-1 递减
展开全部
因为U在(0,1)上的导数都是大于o的,某函数在定义域内增,那么他的导函数在这一定义域内大于0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-05
展开全部
你们高中老师应该和你们讲过一个方法就是判断是增函数和减函数的方法,你画一条数轴,有3个点-1,0,1 根据画出的波浪线可以判断出 如果要在(-∞,-1 ]为减函数,在(-1,0)上为增函数的话就波浪线在(-∞,-1 为负 在(-1,0)为正那就必须(0,1)在负半轴为减函数,(1,+∞)在正半轴上为增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询