角C=90度 BC=4 AC=3 求三角形ABC的内切圆半径

 我来答
程任翔
2013-10-08 · TA获得超过2.1万个赞
知道答主
回答量:3587
采纳率:100%
帮助的人:539万
展开全部
分析:利用三角形面积相等来求解。
解:在Rt△ABC中,∠C=90°,且BC=4,AC=3
则由勾股定理可得:AB=5
三角形面积SRt△ABC=S△AOB+S△AOC+S△BOC
且S△AOB=1/2 r*AB,S△AOC=1/2 r*AC,S△BOC=1/2 r*BC
则SRt△ABC=1/2 r*(AB+AC+BC)=6r
因为SRt△ABC=1/2 BC*AC=6
所以6r=6
解得r=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式