17题求过程,谢谢各位大神
3个回答
展开全部
|b|^2 =( x+cos(π/6)*y)^2 + (sin(π/6)*y)^2 (将e2方向上的量投影到e1方向和e1垂直的方向)
= x^2+y^2+2*cos(π/6)*x*y
= x^2* (1+(y/x)^2+2*cos(π/6)*y/x)
如果要|x|/|b|最大,及1/(1+(y/x)^2+2*cos(π/6)*y/x)开根号最大,那么就是1+(y/x)^2+2*cos(π/6)*y/x取得最小值,将令t=y/x
那么式子变为 t^2+2*cos(π/6)*t+1= (t+cos(π/6))^2+1-(cos(π/6))^2
那么t+cos(π/6)=0时有最小值为1/4,此时y/x=-cos(π/6)
带入可得|x|/|b|max=2
= x^2+y^2+2*cos(π/6)*x*y
= x^2* (1+(y/x)^2+2*cos(π/6)*y/x)
如果要|x|/|b|最大,及1/(1+(y/x)^2+2*cos(π/6)*y/x)开根号最大,那么就是1+(y/x)^2+2*cos(π/6)*y/x取得最小值,将令t=y/x
那么式子变为 t^2+2*cos(π/6)*t+1= (t+cos(π/6))^2+1-(cos(π/6))^2
那么t+cos(π/6)=0时有最小值为1/4,此时y/x=-cos(π/6)
带入可得|x|/|b|max=2
2013-10-08
展开全部
|x|/|b|=|x|/sqrt(x^2+y^2+√3xy)
=1/sqrt(1+y^2/x^2+√3y/x)
=1/sqrt((y/x+√3/2)^2+1/4)
y/x=-√3/2时,分母取得最小值:1/2
|x|/|b|取得最大值:2
=1/sqrt(1+y^2/x^2+√3y/x)
=1/sqrt((y/x+√3/2)^2+1/4)
y/x=-√3/2时,分母取得最小值:1/2
|x|/|b|取得最大值:2
更多追问追答
追问
sqrt是什么意思
追答
平方根
说明:sqrt:Square Root Calculations,高数没教过么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
???哪个是17题
更多追问追答
追问
就最后一道题
看得清吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询