如图,已知:在三角形ABC中,角BAC的角平分线交BC于D,且DE垂直AB,DF垂直AC,垂足分别是E,F.求证:AD是EF的垂直

穗子和子一
高赞答主

2013-10-08 · 点赞后记得关注哦
知道大有可为答主
回答量:3.2万
采纳率:76%
帮助的人:8350万
展开全部
证明:由AD是∠BAC的平分线,可得∠EAD=∠FAD,
又∵∠DEA=∠DFA=90°,AD为公共边,
∴可证得△AED≌△AFD.
∴AE=AF,可知△AEF为等腰三角形.
由AE=AF,AG为公共边,∠EAD=∠FAD,
∴△AEG≌△AFG(SAS).
∴可得EG=FG.
∴AG是△AEF的中线.
又∵等腰三角形的三线合一
∴AD⊥EF.

施主,我看你骨骼清奇,
器宇轩昂,且有慧根,
乃是万中无一的武林奇才.
潜心修习,将来必成大器,
鄙人有个小小的考验请点击在下答案旁的
"选为满意答案"
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式