1个回答
展开全部
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
Re[f(z)]=e^xcosy,Im[f(z)]=e^xsiny
令u(x,y)=e^xcosy,v(x,y)=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都游毁成立
即对于任意高没的z∈C,f(z)=e^z都满足柯西黎曼条件戚磨纳
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
Re[f(z)]=e^xcosy,Im[f(z)]=e^xsiny
令u(x,y)=e^xcosy,v(x,y)=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都游毁成立
即对于任意高没的z∈C,f(z)=e^z都满足柯西黎曼条件戚磨纳
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
来自:求助得到的回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询