从酒鬼失足到赌徒破产,悲剧收场为何注定
1个回答
展开全部
从酒鬼掉下悬崖到赌徒破产
由前面的分析可知,他破产的概率就是前面定义的 P(n)。 P(n)是 P(1) 的 n 次方,而 P(1) 在酒鬼等概率地向两个方向迈步的时候等于 1,所以 P(n)=1 !这告诉我们,即使是公平赌局,你跟赌场玩,最后也一定会输光的!
在那篇文章里,作者指出,去赌场赌钱无异于直接送钱给赌场老板。正所谓“久赌必输”,就算是一对一机会均等的赌局,要是一直赌下去的话,也总有一天会输光。具体分析如下。
显然,赌徒的钱越多,输光需要的局数也越多。当赌徒的赌金是 n 时,我们记输光的概率为 p(n)。因为每次赌局有一半的可能赢,一半的可能输,赢的时候赌金变成 n + 1,输的时候变成 n - 1,所以 p(n) = (p(n + 1) + p(n - 1))/2。当 n = 0 的时候,即使不用赌,所有东西也都输光了,所以 p(0) = 1。
由此,p 可以看作一个满足下列递推关系的数列p(0) = 1
p(n+1) = 2 * p(n) - p(n-1),
也就是 p(n+1) - p(n) = p(n) - p(n-1)
容易验证 p(n) = n * p(1) - (n-1) 正好符合上面的递推关系。
又因为 p(n) ≥ 0,所以对于任意的 n,必定有 p(1) ≥ 1 - 1/n。因此 p(1) = 1。那么对于所有的 n,则有 p(n) = 1。这意味着,在无限次的赌博中,赌徒在某一次赌博中输光的概率是 1。
其实赌徒的赌博轨迹,可以用所谓的马尔可夫链来描述。把赌徒的赌金值视为不同的状态,而每次赌局则相当于在这些状态之间转移,赢钱时转移到钱多些的状态,输钱时转移到钱少些的状态。而破产的状态就像个陷阱,是跳不出的,因为已经没有赌本了。如果一条马尔可夫链有这样的“陷阱”状态,而每一个状态都有可能到达“陷阱”的话,在不断的转移中,总有一天会掉到“陷阱”里去。所谓“久赌必输”,其实说的就是这么一个道理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询