爱因斯坦提出的广义相对论
3个回答
2013-10-10
展开全部
爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。 引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、Bolyai、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯的学生黎曼发展出来的。所以也称为黎曼几何或曲面几何,在爱因斯坦发展出广义相对论之前,人们都认为非欧几何是无法应用到真实世界中来的。 在广义相对论中,引力的作用被“几何化”——即是说:狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力(假设没有电磁等相互作用)的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程: 而万有引力定律也代之以爱因斯坦场方程: <math>R_ - \fracg_ R = - 8 \pi {G \over c^2} T_ </math> 其中 G 为牛顿万有引力常数 该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: <math>R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c^2} T_ </math> 广义相对论的宇宙现象与科研应用 按照广义相对论,在局部惯性系内,不存在引力,一维时间和三维空间组成四维平坦的欧几里得空间;在任意参考系内,存在引力,引力引起时空弯曲,因而时空是四维弯曲的非欧黎曼空间。爱因斯坦找到了物质分布影响时空几何的引力场方程。时间空间的弯曲结构取决于物质能量密度、动量密度在时间空间中的分布,而时间空间的弯曲结构又反过来决定物体的运动轨道。在引力不强、时间空间弯曲很小情况下,广义相对论的预言同牛顿万有引力定律和牛顿运动定律的预言趋于一致;而引力较强、时间空间弯曲较大情况下,两者有区别。广义相对论提出以来,预言了水星近日点反常进动、光频引力红移、光线引力偏折以及雷达回波延迟,都被天文观测或实验所证实。近年来,关于脉冲双星的观测也提供了有关广义相对论预言存在引力波的有力证据。 广义相对论由于它被令人惊叹地证实以及其理论上的优美,很快得到人们的承认和赞赏。然而由于牛顿引力理论对于绝大部分引力现象已经足够精确,广义相对论只提供了一个极小的修正,人们在实用上并不需要它,因此,广义相对论建立以后的半个世纪,并没有受到充分重视,也没有得到迅速发展。到20世纪60年代,情况发生变化,发现强引力天体(中子星)和3K宇宙背景辐射,使广义相对论的研究蓬勃发展起来。广义相对论对于研究天体结构和演化以及宇宙的结构和演化具有重要意义。中子星的形成和结构、黑洞物理和黑洞探测、引力辐射理论和引力波探测、大爆炸宇宙学、量子引力以及大尺度时空的拓扑结构等问题的研究正在深入,广义相对论成为物理研究的重要理论基础。
2013-10-10
展开全部
广义相对论的概念 相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。 相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。 空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。而且不存在没有物质的空间,因为就算有你也永远无法发现,因为当你看见它的同时,它就有了物质,最起码是光。 相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-10
展开全部
基本的几个:
1.相对速度公式:
△v=|v1-v2|/√(1-v1v2/c^2)
两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速。
2.相对长度公式
L=Lo* √(1-v^2/c^2)
Lo是物体静止是的长度,L是物体的运动时的长度,v是物体速度,c是光速。由此可知速度越大,物体长度越压缩,当物体以光速运动,物体的运动方向长度为0.
3.相对质量公式
M=Mo/√(1-v^2/c^2)
Mo是物体静止时的质量,M是物体的运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷
4.相对时间公式
t=to* √(1-v^2/c^2)
to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。
5。质能方程
E=mc^2
质量和能量本质相同
爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。至此,广义相对论的运动学出现了。到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。
1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份。但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已。其中最著名的有三个解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordström solution and the Kerr solution。
在广义相对论的观测上,也有著许多的进展。水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明。第二个实验则是1919年爱丁顿在非洲趁日蚀的时候量测星光因太阳的重力场所产生的偏折,和广义相对论所预测的一模一样。这时,广义相对论的理论已被大众和大多的物理学家广泛地接受了。之后,更有许多的实验去测试广义相对论的理论,并且证实了广义相对论的正确。
1.相对速度公式:
△v=|v1-v2|/√(1-v1v2/c^2)
两物体速度是v1,v2,它们之间速度的差是△v,过去我们认为△v=|v1-v2|,这个公式决定了,没有物体可以超过光速。
2.相对长度公式
L=Lo* √(1-v^2/c^2)
Lo是物体静止是的长度,L是物体的运动时的长度,v是物体速度,c是光速。由此可知速度越大,物体长度越压缩,当物体以光速运动,物体的运动方向长度为0.
3.相对质量公式
M=Mo/√(1-v^2/c^2)
Mo是物体静止时的质量,M是物体的运动时的质量,v是物体速度,c是光速。由此可知速度越大,物体质量越大,当物体以光速运动,物体的质量为正无穷
4.相对时间公式
t=to* √(1-v^2/c^2)
to是物体静止时的时间流逝的快慢,t是物体的运动时的时间流逝快慢,v是物体速度,c是光速。由此可知速度越大,物体时间走得越慢,当物体以光速运动,物体的时间就不再流逝,从而时间停止。
5。质能方程
E=mc^2
质量和能量本质相同
爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。至此,广义相对论的运动学出现了。到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。
1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份。但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已。其中最著名的有三个解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordström solution and the Kerr solution。
在广义相对论的观测上,也有著许多的进展。水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明。第二个实验则是1919年爱丁顿在非洲趁日蚀的时候量测星光因太阳的重力场所产生的偏折,和广义相对论所预测的一模一样。这时,广义相对论的理论已被大众和大多的物理学家广泛地接受了。之后,更有许多的实验去测试广义相对论的理论,并且证实了广义相对论的正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询