高一数学必修四三角函数总结

 我来答
小兵闯天涯
推荐于2016-04-10 · 知道合伙人教育行家
小兵闯天涯
知道合伙人教育行家
采纳数:1849 获赞数:18933
毕业于淮阴师范学院统计学专业,学士学位。从事2年统计工作,做过辅导班老师,对中小学教育有个人见解。

向TA提问 私信TA
展开全部
  三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
  常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
  三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
  任意角三角函数定义:
  如图:在平面直角坐标系中设O-x为任意角α的始边,在角α终边上任取一点P(x,y),令OP=r.
  sinα=y/r cosα=x/r
  cscα=r/y secα=r/x
  tanα=y/x cotα=x/y
  单位圆定义:
  六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的方程是:对于圆上的任意点(x,y),x²+y²=1。
  在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。
  三角恒等式:

  两角和与差
  内容
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α+β)=sinα·cosβ+cosα·sinβ
  sin(α-β)=sinα·cosβ-cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  证明
  取直角坐标系,作单位圆
  取一点A,连接OA,与X轴的夹角为α 取一点B,连接OB,与X轴的夹角为β, OA与OB的夹角即为α-β
  A(cosα,sinα),B(cosβ,sinβ) OA=(cosα,sinα) OB=(cosβ,sinβ)
  OA·OB
  =|OA||OB|cos(α-β) =cosαcosβ+sinαsinβ
  |OA|=|OB|=1
  cos(α-β)=cosαcosβ+sinαsinβ

  和差化积
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  积化和差
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  倍角公式
  sin(2α)=2sinα·cosα=2/(tanα+cotα)
  cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α
  tan(2α)=2tanα/[1-(tanα)²]
  cot(2α)=(cot²α-1)/(2cotα)
  sec(2α)=sec²α/(1-tan²α)
  csc(2α)=1/2secα·cscα

  三倍角公式
  sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)
  cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
  tan(3α) = (3tanα-tan^3α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α)
  cot(3α)=(cot^3α-3cotα)/(3cot²α-1)

  n倍角公式
  根据欧拉公式(cosθ+isinθ)^n=cosnθ+isinnθ
  将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式
  sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
  cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α

  半角公式
  sin(α/2)=±√[(1-cosα)/2]
  cos(α/2)=±√[(1+cosα)/2]
  tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα
  cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα
  sec(α/2)=±√[(2secα/(secα+1)]
  csc(α/2)=±√[(2secα/(secα-1)]

  辅助角公式
  Asinα+Bcosα=√A^2+B^2(sinαcosβ+cosαsinβ)=√A^2+B^2sin(α+β)=√A^2+B^2sin(α+arctanB/A)

  万能公式
  sina=[2tan(a/2)]/[1+tan²(a/2)]
  cosa=[1-tan²(a/2)]/[1+tan²(a/2)]
  tana=[2tan(a/2)]/[1-tan²(a/2)]

  降幂公式
  sin²α=[1-cos(2α)]/2
  cos²α=[1+cos(2α)]/2
  tan²α=[1-cos(2α)]/[1+cos(2α)]

  三角和
  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  幂级数
  c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
  它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。

  泰勒展开式
  泰勒展开式又叫幂级数展开法
  f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……
  实用幂级数:
  e^x = 1+x+x²/2!+x^3/3!+……+x^n/n!+…… (-∞<x<∞)
  ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
  sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)
  cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
  arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k+1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘
  arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
  arctan x = x - x^3/3 + x^5/5 -……(x≤1)
  sinh x = x+x^3/3!+x^5/5!+……+(x^(2k-1))/(2k-1)!+…… (-∞<x<∞)
  cosh x = 1+x^2/2!+x^4/4!+……+(x^(2k))/(2k)!+……(-∞<x<∞)
  arcsinh x =x - x^3/(2*3) + (1*3)x^5/(2*4*5) -1*3*5(x^7)/(2*4*6*7)……(|x|<1)
  arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
  在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
匿名用户
推荐于2018-04-11
展开全部
同角三角函数的基本关系  倒数关系:   tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1    商的关系:    sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方关系:   sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α) 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)   证明:(sina+sinθ)*(sina-sinθ) =2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]   =sin(a+θ)*sin(a-θ) 坡度公式   我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,   即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作   a(叫做坡角),那么 i=h/l=tan a. 二倍角公式   正弦   sin2A=2sinA·cosA   余弦   1.Cos2a=Cos^2(a)-Sin^2(a)   2.Cos2a=1-2Sin^2(a)   3.Cos2a=2Cos^2(a)-1   即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)   正切   tan2A=(2tanA)/(1-tan^2(A)) sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 万能公式 sinα=2tan(α/2)/[1+(tan(α/2))^2;]   cosα=[1-(tan(α/2))^2]/[1+(tan(α/2))^2]   tanα=2tan(α/2)/[1-(tan(α/2))^2] 半角公式   tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);   cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.   sin^2(a/2)=(1-cos(a))/2   cos^2(a/2)=(1+cos(a))/2   tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a) 和差化积   sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]   sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]   cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]   cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]   tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)   tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式   tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)   tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ -cosαsinβ 积化和差   sinαsinβ =-[cos(α+β)-cos(α-β)] /2   cosαcosβ = [cos(α+β)+cos(α-β)]/2   sinαcosβ = [sin(α+β)+sin(α-β)]/2   cosαsinβ = [sin(α+β)-sin(α-β)]/2 诱导公式 公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)= sinα   cos(2kπ+α)= cosα   tan(2kπ+α)= tanα   cot(2kπ+α)= cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)= -sinα   cos(π+α)= -cosα   tan(π+α)= tanα   cot(π+α)= cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)= -sinα   cos(-α)= cosα   tan(-α)= -tanα   cot(-α)= -cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)= sinα   cos(π-α)= -cosα   tan(π-α)= -tanα   cot(π-α)= -cotα   公式五:   利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)= -sinα   cos(2π-α)= cosα   tan(2π-α)= -tanα   cot(2π-α)= -cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)= cosα   cos(π/2+α)= -sinα   tan(π/2+α)= -cotα   cot(π/2+α)= -tanα   sin(π/2-α)= cosα   cos(π/2-α)= sinα   tan(π/2-α)= cotα   cot(π/2-α)= tanα   sin(3π/2+α)= -cosα   cos(3π/2+α)= sinα   tan(3π/2+α)= -cotα   cot(3π/2+α)= -tanα   sin(3π/2-α)= -cosα   cos(3π/2-α)= -sinα   tan(3π/2-α)= cotα   cot(3π/2-α)= tanα   (以上k∈Z)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式