为什么上行落后下行三个时隙
1个回答
展开全部
1、背景技术
TD-SCDMA是国际电信联盟ITU正式发布的第三代移动通信空中接口技术规范之一,其关键技术有可调整上下行切换点的时分双工技术、智能天线技术、联合检测技术。TD-SCDMA的优势突出表现在系统抗干扰和系统容量之间得到了很好的均衡、对混合业务的高效支持、系统自身有良好的持续发展和技术演进性。
TD-SCDMA的多址接入方案属于DS-SCDMA,码片速率为1.28Mc/s,扩频带宽约为1.6MHz,采用不需配对频率的TDD工作方式。它的下行和上行的信息是在同一载频的不同时隙上进行传送的。TD-SCDMA的物理信道采用四层结构:系统帧、无线帧、子帧和时隙/码。图1是TD-SCDMA的物理信道信号格式。
图1 TD-SCDMA的物理信道信号格式
其帧结构将10ms的无线帧分成两个5ms的子帧,每个子帧中有7个常规时隙和3个特殊时隙。三个特殊时隙分别为下行导频时隙DwPTS、主保护时隙GP和上行导频时隙UpPTS。在7个常规时隙中TSO总是分配给下行链路,而TS1总是分配给上行链路。通过灵活配置上下行时隙的个数,使TD-SCDMA适用于上下行对称及非对称业务模式。上行时隙和下行时隙之间由转换点分开。在TD-SCDMA系统中,每个5ms的子帧有两个转换点:第一个转换点是从下行链路转到上行链路,位置在DwPTS和UpPTS之间的GP;第二个转换点是从上行链路转到下行链路,位置在每个子帧中最后一个上行时隙和第二个下行时隙之间,TSO是第一个下行时隙。其中,第一个转换点相对于每个子帧的开始时间是固定的;第二个转换点随着分配给上下行的时隙数不同而变化。
无论何种无线通信的覆盖区域都将产生弱信号区和盲区,而对一些偏远地区和用户数不多的盲区,要架设基站成本太高,基础设施也较复杂,为此提供一种成本低、架设简单,却具有小型基站功能、经济有效的设备——直放站是很有必要的。因此,TD-SCDMA直放站在TD-SCDMA网络中扮演着重要角色。
2、同步方式介绍
在TD-SCDMA系统中,上行链路信号和下行链路信号处于同一频率,通过时分复用的方式区分上行和下行。因此TD-SCDMA直放站需要获取两个转换点位置信息,完成对射频信道的上下行切换。
现有能实现与基站同步的方法有:功率检测法、特征窗搜寻法、GPS同步法以及下行同步码相关检测同步法。功率检测法主要是通过对射频信号的功率进行快速检测,然后对检测值快速做出响应;特征窗搜寻法的基础是:SYNC-DL前有48个码片的保护间隔,SYNC-DL后有96码片的保护间隔,且SYNC-DL信号的功率很大。现有特征窗搜寻法仅仅按照一定的匹配准则去查找SYNC-DL。但现有的特征窗搜寻法容易受用户终端或临近基站的干扰出现误判。下行同步码相关法不容易受干扰,但其技术复杂度高,会相应提高设备成本。GPS同步方式则通过设备接收GPS信号作为时间参考,同时调整直放站的开关时间与基站同步,这种方式,工程开通比较复杂需要携带额外的仪表。下面对这三种同步方式进行详细的比较和分析。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询