高中数学 求数列通项公式题目
在数列{An}中,A1=A2=1,A(n+1)+An=A(n+2),(n>2),求此数列的通项公式...
在数列{An}中,A1=A2=1,A(n+1)+An=A(n+2),(n>2),求此数列的通项公式
展开
5个回答
2013-10-11
展开全部
这是费波那契数列,通项公式为:A(n)={[(1+√5)/2]^n-[(1-√5)/2]^n}/√5推导过程如下:我们给出初值A(1),A(2),和初始条件A(n+2)=A(n+1)+A(n)
则A(n+2)-pA(n+1)=q[A(n+1)-pA(n)]
比较系数可得
p+q=1,pq=-1
两者都满足方程x^2-x-1=0
令B(n)=A(n+1)-pA(n), 则B(1)=A(2)-pA(1)
B(n+1)=qB(n)
B(n)=q^(n-1)B(1)
将B(n)=A(n+1)-pA(n), 代入可得
A(n+1)-pA(n)=q^(n-1)B(1)
这个可以写为
A(n+1)+sq^(n)B(1)=p[A(n)+sq^(n-1)B(1)]
比较系数可得
sp-sq=1即s=1/(p-q)
令C(n)=A(n)+sq^(n-1)B(1),则C(1)=A(1)+sB(1)
C(n+1)=pC(n)
C(n)=p^(n-1)C(1)
将C(n)=A(n)+sq^(n-1)B(1),s=1/(p-q)代入可得
A(n)+sq^(n-1)B(1)=p^(n-1)C(1)
即A(n)=C(1)p^(n-1)+[B(1)/(q-p)]q^(n-1)
将B(1),C(1),通通代入,可得
A(n)={[A(2)-A(1)q]/(p-q)}p^(n-1)+{[A(2)-pA(1)]/(q-p)]}q^(n-1)
我们解出x^2-x-1=0的两根,分别为p=(1+√5)/2;q=(1-√5)/2
代入上式可得
A(n)={A(2)+A(1)[(√5-1)/2]}/√5*[(1+√5)/2]^(n-1)
+{A(2)-A(1)[(√5+1)/2]}/(-√5)*[(1-√5)/2]^(n-1)
我们令A(1)=1,A(2)=2
可得
A(n)={[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
则A(n+2)-pA(n+1)=q[A(n+1)-pA(n)]
比较系数可得
p+q=1,pq=-1
两者都满足方程x^2-x-1=0
令B(n)=A(n+1)-pA(n), 则B(1)=A(2)-pA(1)
B(n+1)=qB(n)
B(n)=q^(n-1)B(1)
将B(n)=A(n+1)-pA(n), 代入可得
A(n+1)-pA(n)=q^(n-1)B(1)
这个可以写为
A(n+1)+sq^(n)B(1)=p[A(n)+sq^(n-1)B(1)]
比较系数可得
sp-sq=1即s=1/(p-q)
令C(n)=A(n)+sq^(n-1)B(1),则C(1)=A(1)+sB(1)
C(n+1)=pC(n)
C(n)=p^(n-1)C(1)
将C(n)=A(n)+sq^(n-1)B(1),s=1/(p-q)代入可得
A(n)+sq^(n-1)B(1)=p^(n-1)C(1)
即A(n)=C(1)p^(n-1)+[B(1)/(q-p)]q^(n-1)
将B(1),C(1),通通代入,可得
A(n)={[A(2)-A(1)q]/(p-q)}p^(n-1)+{[A(2)-pA(1)]/(q-p)]}q^(n-1)
我们解出x^2-x-1=0的两根,分别为p=(1+√5)/2;q=(1-√5)/2
代入上式可得
A(n)={A(2)+A(1)[(√5-1)/2]}/√5*[(1+√5)/2]^(n-1)
+{A(2)-A(1)[(√5+1)/2]}/(-√5)*[(1-√5)/2]^(n-1)
我们令A(1)=1,A(2)=2
可得
A(n)={[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-11
展开全部
【斐波那契数列通项公式的推导】 斐波那契数列:1、1、2、3、5、8、13、21、……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
````` 参考资料: http://baike.baidu.com/view/816.htm?fr=ala0_1_1看完这个楼主该明白了吧!
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
迭代法
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))
得α+β=1
αβ=-1
构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2
由式1,式2,可得
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
````` 参考资料: http://baike.baidu.com/view/816.htm?fr=ala0_1_1看完这个楼主该明白了吧!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-11
展开全部
F(n+2) = F(n+1) + F(n) => F(n+2) - F(n+1) - F(n) = 0
令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))
展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0
显然 a+b=1 ab=-1
由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根
解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2
令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即
F(n+1) - aF(n) = G(n) = b^n --------(1)
在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:
F(n+1) - xF(n) = y^n
F(n+1) - yF(n) = x^n
以上两式相减得:
(x-y)F(n) = x^n - y^n
F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
令 F(n+2) - aF(n+1) = b(F(n+1) - aF(n))
展开 F(n+2) - (a+b)F(n+1) + abF(n) = 0
显然 a+b=1 ab=-1
由韦达定理知 a、b为二次方程 x^2 - x - 1 = 0 的两个根
解得 a = (1 + √5)/2,b = (1 -√5)/2 或 a = (1 -√5)/2,b = (1 + √5)/2
令G(n) = F(n+1) - aF(n),则G(n+1) = bG(n),且G(1) = F(2) - aF(1) = 1 - a = b,因此G(n)为等比数列,G(n) = b^n ,即
F(n+1) - aF(n) = G(n) = b^n --------(1)
在(1)式中分别将上述 a b的两组解代入,由于对称性不妨设x = (1 + √5)/2,y = (1 -√5)/2,得到:
F(n+1) - xF(n) = y^n
F(n+1) - yF(n) = x^n
以上两式相减得:
(x-y)F(n) = x^n - y^n
F(n) = (x^n - y^n)/(x-y) = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询