数学起源于哪里?

 我来答
职场技巧豆豆
2018-06-12 · TA获得超过3.6万个赞
知道小有建树答主
回答量:627
采纳率:100%
帮助的人:23.5万
展开全部

数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)

直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”

从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

拓展资料:

学数学意义

学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!

掌握数字规律,训练逻辑思维,能训练人们的思维能力.开发脑力.更理性的去认识这个世界.数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题 掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.意义深远!

匿名用户
2013-10-11
展开全部
数学是研究现实世界空间形式和数量关系的一门科学。它包括算术、代数、几何、三角、解析几何、微积分等等。小学数学是指算术和简易代数及几何初步知识。

数学科学伴随着人类社会的发展,也有它自身发展的历程。前苏联科学院院士A·H·柯尔莫戈洛夫曾把数学发展史划分为四个阶段:第一个阶段的前期产生自然数概念、计算方法和简单的几何图形,后期出现数的写法、数的算术运算、某些几何图形的运用,解答简单的代数题目;第二个阶段逐渐形成了初等数学的分支,即算术、代数、几何、三角;第三个阶段建立了解析几何、微积分、概率论等学科;第四个阶段出现计算机学科,以及应用数学的众多分支、纯数学的若干问题的重大突破等。

我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。

在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书·律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。

春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。《杜忠算术》和《许商算术》是最早的数学专著,但这两部书都失传了。至今仍保留的古代数学专著是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。

大约公元前1世纪完成了《周髀算经》(书中大部分内容于公元前7到6世纪完成),书中记述了矩的用途、勾股定理及其在测量上的应用,相似直角三角形对应边成比例的定理、开平方问题、等差级数问题,应用古“四分历”计算相当复杂的分数运算等,此书为重要的宝贵文献。

古代数学的著名著作是《九章算术》,大约成书于公元1世纪东汉初年,全书列举了246个数学问题及解决问题的方法。共有九章:第一章“方田”介绍土地面积的计算、含有正方形、矩形、三角形、梯形、圆、环等面积公式,弓形面积和球形表面积的近似公式,还有分数四则运算法则、约分、通分、求最大公约数等方法;第二章“粟米”介绍了各种粮食折算的比例问题,及解比例的方法,称为“今有术”;第三章“衰(Cuǐ)分”介绍了按等级分配物资或按一定标准摊派税收的比例分配问题、等差数列和等比数列问题等;第四章“少广”介绍了已知正方形面积或正方体体积,求边长或棱长的开平方或开立方的方法,已知球的体积求直径的问题等;第五章“商功”介绍了立体体积计算,包括长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等体积的计算公式;第六章“均输”介绍了计算按人口多少、物价高低、路程远近等条件,合理摊派税收、民工的正比、反比、复比例、等差级数等问题;第七章“盈不足”介绍了盈亏类问题的算法;第八章“方程”介绍了一次联立方程问题,引入了负数的概念,及正负数的加减法则;第九章“勾股”介绍了勾股定理的应用和简单的测量问题,其后,历史上著名数学家刘徽、祖冲之、李淳风、贾宪等,都曾经深入研究和注释过《九章算术》并且提出许多新的概念和新的方法。在诸如勾股定理的证明、重差术、割圆术、圆周率近似值、球的体积公式、二次和三次方程的解法。同余式和不定方程的解法等方面做出了重要的新贡献。

我国古代数学专著有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。特别应该指出的是,刘徽在《九章算术注》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
奥妙的数学开拓
2017-11-21 · TA获得超过1万个赞
知道大有可为答主
回答量:4002
采纳率:60%
帮助的人:439万
展开全部
数学:这一词在西方源自于古希腊语,其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义。古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
菜青虫131421
2018-12-16 · TA获得超过179个赞
知道答主
回答量:5
采纳率:0%
帮助的人:3553
展开全部
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)

直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”

从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
厚牧文M
2018-10-13 · TA获得超过425个赞
知道小有建树答主
回答量:421
采纳率:0%
帮助的人:54.2万
展开全部
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(37)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式