一个3*2的A矩阵与一个2*3的B矩阵相乘,结果应该是3*3的C矩阵,可为什么r(AB)<=r(A)

一个3*2的A矩阵与一个2*3的B矩阵相乘,结果应该是3*3的C矩阵,可为什么r(AB)<=r(A)... 一个3*2的A矩阵与一个2*3的B矩阵相乘,结果应该是3*3的C矩阵,可为什么r(AB)<=r(A) 展开
 我来答
video0000
2013-10-11 · TA获得超过349个赞
知道小有建树答主
回答量:445
采纳率:100%
帮助的人:252万
展开全部

3*3矩阵的秩也不一定就是3,通过矩阵乘法运算后,秩只会变小,不可能变大的

于是r(AB)<=min(r(A),r(B))  这条定理的证明见下图

所以r(AB)<=r(A)


追问
这条证明我会 但是你只是说的不一定是3 并没说一定不是3  如n维单位向量a与其转秩的积应该是n*n的向量组 为什么其乘积后的秩不是n 反而小于等于一  如何解答?
追答
。。你确定你真的会么?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式