梅涅劳斯定理的作用是什么

雷哥0207
2013-10-12 · TA获得超过4457个赞
知道小有建树答主
回答量:1070
采纳率:0%
帮助的人:2032万
展开全部
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。   或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1   证明一:   过点A作AG∥BC交DF的延长线于G,   则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。   三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1   证明二:   过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF   所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1   它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。    梅涅劳斯(Menelaus)定理   证明三:   过ABC三点向三边引垂线AA'BB'CC',   所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA'   所以(AF/FB)×(BD/DC)×(CE/EA)=1   此外,用定比分点定义该定理可使其容易理解和记忆:   在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是L、M、N三点共线的充要条件是λμν=-1。(注意与塞瓦定理相区分,那里是λμν=1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式