急!一道数学题,数学高手帮忙啊!!!
展开全部
证明:连接CF、FH,
∵BN是∠ABC的平分线,
∴∠ABN=∠CBN,
又∵CH⊥AB,
∴∠CQN=∠BQH=90°-∠ABN=90°-∠CBN=∠CNB,
∴CQ=NC.
又F是QN的中点,
∴CF⊥QN,
∴∠CFB=90°=∠CHB,
∴C、F、H、B四点共圆.
又∠FBH=∠FBC,
∴FC=FH,
∴点F在CH的中垂线上,
同理可证,点E在CH的中垂线上,
∴EF⊥CH,
又AB⊥CH,
∴EF∥AB.
∵BN是∠ABC的平分线,
∴∠ABN=∠CBN,
又∵CH⊥AB,
∴∠CQN=∠BQH=90°-∠ABN=90°-∠CBN=∠CNB,
∴CQ=NC.
又F是QN的中点,
∴CF⊥QN,
∴∠CFB=90°=∠CHB,
∴C、F、H、B四点共圆.
又∠FBH=∠FBC,
∴FC=FH,
∴点F在CH的中垂线上,
同理可证,点E在CH的中垂线上,
∴EF⊥CH,
又AB⊥CH,
∴EF∥AB.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询