初二一次函数的所有知识点
3个回答
2013-10-13
展开全部
二次函数知识点总结
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
①当 时 抛物线开口向上 顶点为其最低点;
②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .
3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.
4.二次函数 用配方法可化成: 的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.
① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线
,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
① ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式 开口方向 对称轴 顶点坐标
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
①当 时 抛物线开口向上 顶点为其最低点;
②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .
3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.
4.二次函数 用配方法可化成: 的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.
① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线
,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
① ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式 开口方向 对称轴 顶点坐标
2013-10-13
展开全部
提醒一下,第10项有错误,正确口诀应该是上加下减,左加右减,左减右加只是针对于点来看的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-13
展开全部
概述 一次函数(linear function)在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。 [编辑本段]基本定义 变量:变化的量
常量:不变的量
自变量x和X的一次函数y有如下关系:
y=kx+b (k为任意不为零常数,b为任意常数)
当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是函数。
x为自变量,y为因变量,k为常量,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。
定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。 [编辑本段]相关性质 函数性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k≠0) (k不等于0,且k,b为常数)
2.当x=0时,b为函数在y轴上的,坐标为(0,b).
3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)
形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
图像性质
1.作法与图形:通过如下3个步骤
(1)列表[一般取两个点,根据两点确定一条直线];
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b,0与0,b)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比)
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。
当 k<0,b>0, 这时此函数的图象经过一,二,四象限。
当 k<0,b<0, 这时此函数的图象经过二,三,四象限。
当b>0时,直线必通过一、二象限;
当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。
4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) [编辑本段]表达式 解析式类型
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a) [编辑本段]常用公式 1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)
x y
+ + 在第一象限
+ - 在第四象限
- + 在第二象限
- - 在第三象限
8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.
y=k(x-n)+b就是向左平移n个单位
y=k(x+n)+b就是向右平移n个单位
口诀:左减右加(只对于改变x)
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口诀:上加下减(只对于改变b)
常量:不变的量
自变量x和X的一次函数y有如下关系:
y=kx+b (k为任意不为零常数,b为任意常数)
当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是函数。
x为自变量,y为因变量,k为常量,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。
定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。 [编辑本段]相关性质 函数性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k≠0) (k不等于0,且k,b为常数)
2.当x=0时,b为函数在y轴上的,坐标为(0,b).
3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)
形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
图像性质
1.作法与图形:通过如下3个步骤
(1)列表[一般取两个点,根据两点确定一条直线];
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b,0与0,b)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比)
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。
当 k<0,b>0, 这时此函数的图象经过一,二,四象限。
当 k<0,b<0, 这时此函数的图象经过二,三,四象限。
当b>0时,直线必通过一、二象限;
当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。
4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) [编辑本段]表达式 解析式类型
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a) [编辑本段]常用公式 1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)
x y
+ + 在第一象限
+ - 在第四象限
- + 在第二象限
- - 在第三象限
8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.
y=k(x-n)+b就是向左平移n个单位
y=k(x+n)+b就是向右平移n个单位
口诀:左减右加(只对于改变x)
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口诀:上加下减(只对于改变b)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |