某数学兴趣小组开展了一次活动,过程如下:如图1,正方形abcd中,ab=6,将三角形板放在正方形abcd上
5个回答
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有图形怎么回答?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考点:四边形综合题.
分析:(1)证明△ADP≌△CDQ,即可得到结论:DP=DQ;
(2)证明△DEP≌△DEQ,即可得到结论:PE=QE;
(3)与(1)(2)同理,可以分别证明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的长度,从而可求得S△DEQ= 150\7,而△DEP≌△DEQ,所以S△DEP=S△DEQ= 150\7
解答:(1)证明:∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP与△CDQ中,
∠DAP=∠DCQ=90°
AD=CD
∠ADP=∠CDQ
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜测:PE=QE.
证明:由(1)可知,DP=DQ.
在△DEP与△DEQ中,
DP=DQ
∠PDE=∠QDE=45°
DE=DE
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)解:∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,
∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,
∴PE=QE.
设QE=PE=x,则BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14-x)2=x2,
解得:x= 50\7
,即QE= 50\7
∴S△DEQ= 1\2QE•CD= 1\2×50\7×6= 150\7
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ= 150\7
请采纳!!O(∩_∩)O谢谢滴哈!!!
分析:(1)证明△ADP≌△CDQ,即可得到结论:DP=DQ;
(2)证明△DEP≌△DEQ,即可得到结论:PE=QE;
(3)与(1)(2)同理,可以分别证明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的长度,从而可求得S△DEQ= 150\7,而△DEP≌△DEQ,所以S△DEP=S△DEQ= 150\7
解答:(1)证明:∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP与△CDQ中,
∠DAP=∠DCQ=90°
AD=CD
∠ADP=∠CDQ
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜测:PE=QE.
证明:由(1)可知,DP=DQ.
在△DEP与△DEQ中,
DP=DQ
∠PDE=∠QDE=45°
DE=DE
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)解:∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,
∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,
∴PE=QE.
设QE=PE=x,则BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14-x)2=x2,
解得:x= 50\7
,即QE= 50\7
∴S△DEQ= 1\2QE•CD= 1\2×50\7×6= 150\7
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ= 150\7
请采纳!!O(∩_∩)O谢谢滴哈!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询