多元函数求极值为什么要求条件连续的二阶偏导数?

_小傻加油
2013-10-14
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
各个分量的偏导数为0,这是一个必要条件。充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的。如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断三阶行列式。如果这个多元函数的二阶偏导数的行列式是不定的,那么这时不是极值点。 以二元函数为例,设函数z=f(x,y)在点(x。,y。)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x。,y。),fy(x。,y。)=0,令 fxx(x。,y。)=A,fxy=(x。,y。)=B,fyy=(x。,y。)=C 则f(x,y)在(x。,y。)处是否取得极值的条件是 (1)AC-B*B>0时有极值 (2)AC-B*B<0时没有极值 (3)AC-B*B=0时可能有极值,也有可能没有极值如果是n元函数需要用行列式表示。估计你也没学行列式呢。 如果是条件极值,那么更复杂一些。 大一的时候数学分析讲的,网上不好找到教材,建议你看一下大学课本。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式