已知钢筋混凝土矩形梁,处于一类环境,其截面尺寸b*h=250mm*250mm,承受弯矩设计值M=1

已知钢筋混凝土矩形梁,处于一类环境,其截面尺寸b*h=250mm*250mm,承受弯矩设计值M=150kN·m,采用C30混凝土和HRB400级钢筋。试配置截面钢筋。... 已知钢筋混凝土矩形梁,处于一类环境,其截面尺寸b*h=250mm*250mm,承受弯矩设计值M=150kN·m,采用C30混凝土和HRB400级钢筋。试配置截面钢筋。 展开
 我来答
汤旭杰律师
2013-10-25 · 律师
汤旭杰律师
采纳数:135 获赞数:48527

向TA提问 私信TA
展开全部
  梁正截面受弯承载力计算书
  1已知条件
  梁截面宽度b=250mm,高度h=500mm,受压钢筋合力点至截面近边缘距离a's=35mm,受拉钢筋合力点到截面近边缘距离as=35mm,混凝土强度等级C30,纵向受拉钢筋强度设计值fy=300Mpa,纵向受压钢筋强度设计值f'y=300Mpa,非抗震设计,设计截面位于框架梁梁中,截面设计弯矩M=150kN·m,截面下部受拉。
  2配筋计算
  查混凝土规范表4.1.4可知
  fc=14.3Mpa ft=1.43Mpa
  由混凝土规范6.2.6条可知
  α1=1.0 β1=0.8
  由混凝土规范公式(6.2.1-5)可知混凝土极限压应变
  εcu=0.0033
  由混凝土规范表4.2.5可得钢筋弹性模量
  Es=200000Mpa
  相对界限受压区高度
  ξb=0.550
  截面有效高度
  h0=h-a's=500-35=465mm
  受拉钢筋最小配筋率
  ρsmin=0.0021
  受拉钢筋最小配筋面积
   Asmin=ρsminbh
  =0.0021×250×500
  =268.67mm2
  混凝土能承受的最大弯矩
  Mcmax=α1fcξbh0b(h0-0.5ξbh0)
  =1.0×14.3×0.550×465×250×(465-0.5×0.550×465)
  =308912928N·mm >M
  由混凝土规范公式(6.2.10-1)可得
  αs=M/α1/fc/b/h20
  =150000000/1.0/14.3/250/4652
  =0.19
  截面相对受压区高度
  ξ=1-(1-2αs)0.5=1-(1-2×0.19)0.5=0.217
  由混凝土规范公式(6.2.10-2)可得受拉钢筋面积
  As=(α1fcbξh0)/fy
  =(1.0×14.3×250×0.22×465)/300
  =1206.28mm2
  As>Asmin,取受拉钢筋面积
  As=1206.28mm2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式