计算1的三次方+2的三次方+3的三次方+...+100的三次方? 计算2的三次方+4的三次方+...+100的三次方?
2013-10-16
展开全部
设S=13+23+33+…+n3……………………………………………………….(1)
有S=n3+(n-1)3+(n-2)3+…+13……………………………………………...(2)
由(1)+ (2)得:2S=n3+13+(n-1)3+23+(n-2)3+33+…+n3+13
=(n+1)(n2-n+1)
+
(n+1)[(n-1)2-2(n-1)+22)
+
(n+1)[(n-2)2-3(n-2)+32)
+
.
.
.
+
(n+1)(12-n(n-n+1)(n-n+1+ n2)
即2S=( n+1)[2(12+22+32+…+n2)-n-2(n-1) -3(n-2)-…-n (n-n+1)] ………………...(3)
由12+22+32+…+n2=n(n+1)(2n+1)/ 6代入(2)得:
2S=(n+1)[2n(n+ 1)(2n+1)/6-n-2n-3n-…nn+2×1+3×2+…+n(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n(1+2+3+…n)+(1+1)×1+(2+1)×2+…+(n-1+1)(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12+1+22+2+…+(n-1)2+ (n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2(1+n)/2+12+22+…+(n-1)2+1 +2+…+ (n-1)] ……...(4)
由12+22+…+(n-1)2= n(n+1)(2n+1)/6-n 2,1+2+…+(n-1)=n(n-1)/2代入(4)得:
2S=(n+1)[3n(n+1)(2n+1)/6-n2+n(n-1)/2
=n2(n+1)2/2
即S=13+23+33+…+n3= n2(n+1)2/4 =n的平方*(n+1)的平方除以4因为n=100.所以。原式=25502500
有S=n3+(n-1)3+(n-2)3+…+13……………………………………………...(2)
由(1)+ (2)得:2S=n3+13+(n-1)3+23+(n-2)3+33+…+n3+13
=(n+1)(n2-n+1)
+
(n+1)[(n-1)2-2(n-1)+22)
+
(n+1)[(n-2)2-3(n-2)+32)
+
.
.
.
+
(n+1)(12-n(n-n+1)(n-n+1+ n2)
即2S=( n+1)[2(12+22+32+…+n2)-n-2(n-1) -3(n-2)-…-n (n-n+1)] ………………...(3)
由12+22+32+…+n2=n(n+1)(2n+1)/ 6代入(2)得:
2S=(n+1)[2n(n+ 1)(2n+1)/6-n-2n-3n-…nn+2×1+3×2+…+n(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n(1+2+3+…n)+(1+1)×1+(2+1)×2+…+(n-1+1)(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12+1+22+2+…+(n-1)2+ (n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2(1+n)/2+12+22+…+(n-1)2+1 +2+…+ (n-1)] ……...(4)
由12+22+…+(n-1)2= n(n+1)(2n+1)/6-n 2,1+2+…+(n-1)=n(n-1)/2代入(4)得:
2S=(n+1)[3n(n+1)(2n+1)/6-n2+n(n-1)/2
=n2(n+1)2/2
即S=13+23+33+…+n3= n2(n+1)2/4 =n的平方*(n+1)的平方除以4因为n=100.所以。原式=25502500
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询