如图,三角形ABC中,AB=AC,∠BAC=90,D为AC上中点,连接BD,过A点作AF⊥BD交BC于E,求证∠ADB=∠CDE
1个回答
2013-10-16
展开全部
过C作CG⊥AC交AE延长线于G
∵AE⊥BD于F,所以∠DBA=∠GAC(都与∠EAB互余)
又∵AB=CA,∠DAB=∠GCA=90°
∴△DAB≌△GCA(角边角)
∴∠ADB=∠CGA,AD=CG
又∵AD=DC,所以CD=CG
又∵∠GCE=∠DCE=45°,CE=CE
∴△GCE≌△DCE(边角边)
∴∠CGA=∠CDE
∴∠ADB=∠CDE
∵AE⊥BD于F,所以∠DBA=∠GAC(都与∠EAB互余)
又∵AB=CA,∠DAB=∠GCA=90°
∴△DAB≌△GCA(角边角)
∴∠ADB=∠CGA,AD=CG
又∵AD=DC,所以CD=CG
又∵∠GCE=∠DCE=45°,CE=CE
∴△GCE≌△DCE(边角边)
∴∠CGA=∠CDE
∴∠ADB=∠CDE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询