在数列{an}中,Sn+1=4an+2,a1=1

 我来答
b94113
2013-10-14 · TA获得超过1287个赞
知道小有建树答主
回答量:453
采纳率:75%
帮助的人:87.6万
展开全部
S(n+1)=4an+2 Sn=4a(n-1)+2 S2=a1+a2=4a1+2=6 a2=5
a(n+1)=S(n+1)-Sn=4an-4a(n-1)
a(n+1)-2an=2[an-2a(n-1)]
(1) 所以bn=a(n+1)-2an=2[an-2a(n-1)]=2b(n-1)
即{bn}是公比为2的等比数列
(2) 由(1) b1=a2-2a1=5-2*1=3
所以bn=a(n+1)-2an=3*2^(n-1)
即an-2a(n-1)=3*2^(n-2)
则an/2^n-a(n-1)/2^(n-1)=3/4
所以cn-c(n-1)=3/4
故{cn}是公差为3/4的等差数列
(3) 由(2) c1=a1/2=1/2
则cn=1/2+(n-1)*3/4=(3/4)n-1/4
即an/2^n=(3n-1)/4
所以通项公式an=(3n-1)*2^(n-2),
a(n-1)=(3n-4)* 2^(n-3),

由已知:Sn=4a(n-1)+2
所以Sn=4*(3n-4)* 2^(n-3) +2=(3n-4)* 2^(n-1)+2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式