如何在不使用常数变易法的条件下求出一阶微分方程y'+P(x)y=Q(x)的通解?

he_123456
2013-10-15 · TA获得超过2892个赞
知道大有可为答主
回答量:3162
采纳率:58%
帮助的人:1337万
展开全部
P(x)?不是常系数?不太可能有一般解法
robin_2006
2013-10-15 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8449万
展开全部
y'+P(x)y=0的通解是y=Ce^(-∫P(x)dx),也就是y×e^(∫P(x)dx)=C,所以[y×e^(∫P(x)dx)]'=0,即y'×e^(∫P(x)dx)+y×e^(∫P(x)dx)×P(x)=0,这相当于原微分方程y'+P(x)y=0两边同乘以了e^(∫P(x)dx)。

由此考虑在y'+P(x)y=Q(x)两边也同乘以e^(∫P(x)dx),得y'×e^(∫P(x)dx)+y×e^(∫P(x)dx)×p(x)y=e^(∫P(x)dx)×Q(x),即[y×e^(∫P(x)dx)]'=e^(∫P(x)dx)×Q(x),两边积分得y×e^(∫P(x)dx)=∫Q(x)e^(∫P(x)dx)dx+C,所以y=e^(-∫P(x)dx)×[∫Q(x)e^(∫P(x)dx)dx+C]。这就是一阶非齐次线性微分方程的通解公式。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式