解:
原函数不是初等函数
先用分部积分法:∫x^2e(x^2)dx=(1/2)∫xd(e^x^2)=(1/2)xe^(x^2)-(1/2)∫e^x^2dx,这里求∫e^x^2dx,设t=x^2,dx=1/[2t^(1/2)]
原式=∫e^tdt/t^(1/2)
用泰勒展开式e^t=1+t+t^2/2!+t^3/3!+..+t^n/n!
=∫[1/t^(1/2)+t^(1/2)+t^(3/2)/2!+t^(5/2)/3!+..+t^(n-1/2)/n!]dt 逐项积分:
=2t^(1/2)+(2/3)t^(3/2)+(2/5)t^(5/2)/2!+(2/7)t^(7/2)/3!+..+(n+1/2)*t^(n+1/2)/n!+C
所以∫x^2e^(x^2)dx
=(1/2)xe^(x^2)-(1/4)[2*x+(2/3)x^3+(2/5)x^5/2!+(2/7)x^7/3!+..+(n+1/2)x^(2n+1)/n!] +C
基本介绍
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。