∫x^2e^xe^(-x^2)dx怎么积分

如图... 如图 展开
帐号已注销
2021-08-03 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

解:

原函数不是初等函数

先用分部积分法:∫x^2e(x^2)dx=(1/2)∫xd(e^x^2)=(1/2)xe^(x^2)-(1/2)∫e^x^2dx,这里求∫e^x^2dx,设t=x^2,dx=1/[2t^(1/2)]

原式=∫e^tdt/t^(1/2)

泰勒展开式e^t=1+t+t^2/2!+t^3/3!+..+t^n/n!

=∫[1/t^(1/2)+t^(1/2)+t^(3/2)/2!+t^(5/2)/3!+..+t^(n-1/2)/n!]dt 逐项积分:

=2t^(1/2)+(2/3)t^(3/2)+(2/5)t^(5/2)/2!+(2/7)t^(7/2)/3!+..+(n+1/2)*t^(n+1/2)/n!+C

所以∫x^2e^(x^2)dx

=(1/2)xe^(x^2)-(1/4)[2*x+(2/3)x^3+(2/5)x^5/2!+(2/7)x^7/3!+..+(n+1/2)x^(2n+1)/n!] +C

基本介绍

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。

但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

fin3574
高粉答主

2013-10-15 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134626

向TA提问 私信TA
展开全部

e^(- x^2)在(- ∞,+ ∞)上的积分随便找找就有答案,用二重积分最简单,不多说了。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式