已知函数f(x)=x²+alnx在[1,+∞]单调递增,则实数a的取值范围
展开全部
解:f(x)=x²+alnx(x>0)
故f'(x)=2x+a/x=(2x²+a)/x
因为函数f(x)在[1,+∞)上单调递增,
所以f'(x)在[1,+∞)上恒大于零
因为x恒大于零
所以只要2x²+a≥0
故a≥-2x²
要使这个不等式恒成立
则a≥(-2x²)max=-2
故答案为:a≥-2.
//--------------------------------------------------------------------------------------------------------------------
【明教】为您解答,
如若满意,请点击【采纳为满意回答】;如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
故f'(x)=2x+a/x=(2x²+a)/x
因为函数f(x)在[1,+∞)上单调递增,
所以f'(x)在[1,+∞)上恒大于零
因为x恒大于零
所以只要2x²+a≥0
故a≥-2x²
要使这个不等式恒成立
则a≥(-2x²)max=-2
故答案为:a≥-2.
//--------------------------------------------------------------------------------------------------------------------
【明教】为您解答,
如若满意,请点击【采纳为满意回答】;如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询