奥数蝴蝶原理的公式
1个回答
展开全部
其实,蝴蝶原理并没有固定的公式,以下仅供参考。
蝴蝶定理最先是作为一个征求证明的问题。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。 这里介绍一种较为简便的初等数学证法。 证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM。SM。MT。 ∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC, ∴DS/BT=DM/BM又∵∠D=∠B ∴△MSD∽△MTB,∠MSD=∠MTB ∴∠MSX=∠MTY;又∵O,S,X,M与O,T。Y。M均是四点共圆, ∴∠XOM=∠YOM ∵OM⊥PQ∴XM=YM
蝴蝶定理最先是作为一个征求证明的问题。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。 这里介绍一种较为简便的初等数学证法。 证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM。SM。MT。 ∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC, ∴DS/BT=DM/BM又∵∠D=∠B ∴△MSD∽△MTB,∠MSD=∠MTB ∴∠MSX=∠MTY;又∵O,S,X,M与O,T。Y。M均是四点共圆, ∴∠XOM=∠YOM ∵OM⊥PQ∴XM=YM
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询