3个回答
2013-10-17
展开全部
七年级(上)数学知识点归纳与总结
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.
知识点15:科学记数法
科学记数法的概念? 注意a的范围
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.
知识点15:科学记数法
科学记数法的概念? 注意a的范围
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-17
展开全部
每一学科都有它的历史,数学也概莫能外。然而,和其他自然科学相比,数学有其独特之处。一百多年前,德国数学史家汗克尔(H.Hankel,1839-1873)就形象地指出过数学和其他自然科学的显著差异。他写道:
“在大多数的学科里,一代人的建筑为下一代人所摧毁,一个人的创造被另一个人所破坏。唯独数学,每一代人都在古老的大厦上添砖加瓦。”
可以说,数学是积累的科学,它本身就是历史的记录。或者说,数学的过去溶化在现在与未来之中。鉴于此,本套书力求成为一面“镜子”,返璞归真地反映知识的来龙去脉、思想方法的深刻内涵以及科学文化的进步。为此,本套书在编写过程中溶入了一些数学史料和简略的数学史知识,以使学生开阔视野,启发思维,增加学习兴趣。为了使教师对书中所涉及到的数学史知识有更深入和较全面的了解,本文对七年级上册相关数学史知识予以相当介绍,以飧广大教师朋友。
最早认识并使用负数的是古代中国人,成书于公元1世纪的《九章算术》中就记录了负数及其运算法则。在进行筹算时,用红筹表示正数,黑筹表示负数。因为用笔记录时换色不便,一千多年后,数学家李冶(1192-1279)首创了在数字上加斜杠表示负数。如图1所示表示,可以说,这是世界上最早的负数记号。 图1 西方对负数的认识较晚,15世纪后才正式应用负数,使用的符号也是五花八门。例如威尔金斯1800年用表示;温特非尔德1809年用前加“┥”或“”表示该数为负数。1832年,W.波尔约用“”表示负数。后来又出现多种形式表示负数,如表示负数,相应的表示正数;以为负,为正;为负,为正。直到本世纪初,美国数学家亨廷顿(E.V. Huntington,1874.4-1952.11)才开始采用接近现代形式的符号:,逐渐成为现代的形式。 绝对值符号 现在通用的绝对值符号“| |”,是德国数学家外尔斯特拉斯(K.T.W. Weierstrass,1815-1897)在1841年率先引用的,后来为人们所广泛接受。符号“| |”的含义是,在实数范围内 1905年,甘斯用这个符号表示向量的长度,有时把这个长度也就叫做绝对值。外尔斯特拉斯已经指出,复数的绝对值是它的“模”,用向量解释复数,“模”、“绝对值”、“长度”都是一致的。可见甘斯符号的合理性,因而一直沿用到现在。 幻方 将1到的自然数排列成纵横各有n个数的正方形,使每行、每列、有时还包括两条主对角线的n个数的和(或连乘积)都相等[等于],这种排列称为阶幻方,也叫阶纵横图。 4 9 2 3 5 7 8 1 6 纵横图的起源可以追溯到公元前2200多年。相传,我国大禹治水时,发现一个神龟,背上刻有图案,称“为洛书”(图2),表示神赐给他的一种旨意。与此有关的传说具有很强的神秘色彩。上面的这个图案用阿拉伯数码表示,就是一个如下的三阶纵横图: 图2 中国东汉学者郑玄(127-200)注易纬《乾凿度》中有“太一取其数以行九宫,四正四维皆合于十五”,大意是:太一神依照一定顺序巡行于九宫,九个位置的图案所显示出的数字表明太一神巡行的次第。因此古代中国人也称三阶纵横图为九宫数或九宫图。如北周学者甄鸾(535年左右)注《数术记遗》中说:“九宫者,二、四为肩,六、八为足,左三右七,戴九履一,五居中央”。与前面的龟文暗合。 我国历代学者对纵横图都有过许多研究。“纵横图”一词最早出现在南宋杨辉(约十三世纪中叶)所著的《续古摘奇算法》(1275)之中。杨辉在书中还给出了三至十阶的纵横图及其变体共13种。 中世纪的阿拉伯学者对纵横图也有研究。1956年,西安出土了1278年阿拉伯学者扎马鲁丁为西安王推算历法期间用“东阿拉伯数字”所做的铁制六阶纵横图,见图3。用现代的阿拉伯数码表示如图4: 图3 图4 在欧洲,纵横图的造法大约开始于14世纪。1514年,德国著名的大画家兼数学家丢勒(A. Dürer,1471-1528)雕刻了一副名为《忧郁》的钢板画,画中有一个四阶幻方,如下: 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 这个纵横图不但行、列、对角线上的各个数字之和都是34(欧洲人称之为神秘的常数),而且把这个幻方四等分后,得到的每一部分的四个小方图的数字之和也等于34。此外,丢勒还独具匠心,精心巧妙地设计了一个小秘密,即在方图的最下面中间两个数15,14,连在一起恰好是绘画的年代1514,实在是“幻中之幻”。 1878年这个四阶纵横图在英国人傅兰雅传入中国。事实上,200多年前中国的数学家杨辉就已经得到了这个纵横图。数学家欧拉(L. Euler,1707-1783)和凯莱(A. Cayley,1821-1895)都曾指出,纵横图不仅仅是一种数学游戏,也有研究价值。 现在,人们已经发现各种各样的纵横图,如广义幻方,双重幻方、同心幻方、分块幻方、质数幻方、三维幻方等等。中国古人对纵横图的研究是组合数学发展初期的重要内容,现在,纵横图仍然是组合数学的研究课题。
“方程”一词的由来
中国古代数学著作《九章算术》第八卷的卷名为“方程”,这是“方程”一词的最早出处。但古代方程的含义与现代方程的含义有着较大的差别。 本卷的第一题导致一个线性方程组,现代写法如下: 。 28 4 3 31 35 10 36 18 21 24 11 1 7 23 12 17 22 30 8 13 26 19 16 29 5 20 15 14 25 32 27 33 34 6 2 9 中国古人在解题时把数据排成如图5的长方形(图6为现代的写法,即所谓的增广矩阵), 图5
图6 《九章算术》的作者称为方程,这种解题方法称为“方程术”,这是汉语“方程”一词的开始。此题的术文记录了两千年前我国列线性方程组和解线性方程组的全过程,它相当于严谨的矩阵初等变换法。 方程术的基本思想是顺序消元,把增广矩阵一再用初等变换进行变换,使系数矩阵成为单位矩阵,从而得解。这种方法就是现在的高斯消去法。 现代意义上的列方程和解方程在我国古代称为“天元术”,这个方法大约在十三世纪出现在我国北方的数学界。李冶的《侧圆海镜》,《益古演段》,朱世杰(1300前后)《算学启蒙》、《四元玉鉴》都是十三、十四世纪的著作,他们用“天元术”来解决列方程的问题。 什么是天元术?首先根据题意“立天元一为某某”,与现代数学中“设 为某某”意义相同。其次再根据问题所设条件列出两个相等的多项式,两者相减,就得出一个一端为零的方程。 多项式的天元术记法相当于现代所谓的分离系数法:多项式按其各项幂的次数高低,自上而下直行书写,用中国数码字只记其相应系数,在一次项右边写一元字,常数项右边写一太字。例如,多项式的写法记为: 中国古代求得的多项式方程的解都是正的数值解,多项式方程数值解法的历史可以追溯到《九章算术》中的开方术。在筹算开平方和开立方的基础上,我国从十一世纪开始逐渐摸索到数值解高次方程的一般规律,得到所谓的“增乘开方法”。增乘开方法至秦九邵(约1202—1261)的《数术九章》而大备,在《侧圆海镜》中,李冶对此方法有新的创见。 在西方,数学家霍纳(W.G. Horner,1786—1837)也得到了该方法,但是已经比秦九邵晚500多年了。
古埃及纸草书 非洲东北部的尼罗河流域,是古代文明的发祥地之一,尼罗河孕育了古埃及的文化。在公元前3500—3000年间,在尼罗河下游建立了一个统一的国家,以后埃及的历史主要按统治的朝代命名。古埃及人在长期的生产实践和与自然斗争的过程中,逐渐掌握了丰富的科学知识。土地的丈量、商品的交易以及大规模宫殿和金字塔的建造,无疑都要使用较高深的数学。 目前,我们对古埃及数学的认识,主要根据两本用僧侣文写成的纸草书:一本是伦敦本,一本是莫斯科本。 1858年,在底比斯的拉美西斯神庙附近的一座小建筑物的废墟中发现了一卷纸草书,为英国人莱因德所购得,他死后归伦敦大英博物馆所有。后来称为“莱因德纸草书”,抄写者为阿梅斯,原作者不详。莱因德纸草书产生的年代,有好几种说法,多数学者认为是公元前1650年。 另一本叫做“莫斯科纸草书”,由俄罗斯收藏者戈列尼谢夫在1893年购得。1912年收藏在莫斯科国立造型艺术博物馆。这本纸草书的产生年代大约在公元前1850左右,比莱因德纸草书的产生要晚,但重性要稍逊于莱因德纸草书。
丢番图 丢番图是古希腊数学家,生平不详。主要活动年代是根据11世纪拜占廷学者普赛勒的一封信来确定的,其中提到丢番图在三世纪中叶的某些学术交往。另一线索见于四世纪希腊文选上的一首脍炙人口的短诗:“丢番图的一生,幼年占六分之一,青少年占十二分之一,又过了七分之一方结婚,五年后得子,子先父4年而卒,仅为父寿之半”。由此可推知他终年为84岁。 《算术》一书是丢番图的代表作,是数学历史上的一部重要著作。丢番图的特点是使问题的求解完全脱离了几何形式,在希腊数学中独树一帜。《算术》一书成为世界最早的系统数学专著之一。对后来的阿拉伯数学,文艺复兴时期的意大利数学乃至整个欧洲的数学产生了巨大的影响,也为包括韦达、费马、高斯在内的许多数学家提供了创作源泉。
“在大多数的学科里,一代人的建筑为下一代人所摧毁,一个人的创造被另一个人所破坏。唯独数学,每一代人都在古老的大厦上添砖加瓦。”
可以说,数学是积累的科学,它本身就是历史的记录。或者说,数学的过去溶化在现在与未来之中。鉴于此,本套书力求成为一面“镜子”,返璞归真地反映知识的来龙去脉、思想方法的深刻内涵以及科学文化的进步。为此,本套书在编写过程中溶入了一些数学史料和简略的数学史知识,以使学生开阔视野,启发思维,增加学习兴趣。为了使教师对书中所涉及到的数学史知识有更深入和较全面的了解,本文对七年级上册相关数学史知识予以相当介绍,以飧广大教师朋友。
最早认识并使用负数的是古代中国人,成书于公元1世纪的《九章算术》中就记录了负数及其运算法则。在进行筹算时,用红筹表示正数,黑筹表示负数。因为用笔记录时换色不便,一千多年后,数学家李冶(1192-1279)首创了在数字上加斜杠表示负数。如图1所示表示,可以说,这是世界上最早的负数记号。 图1 西方对负数的认识较晚,15世纪后才正式应用负数,使用的符号也是五花八门。例如威尔金斯1800年用表示;温特非尔德1809年用前加“┥”或“”表示该数为负数。1832年,W.波尔约用“”表示负数。后来又出现多种形式表示负数,如表示负数,相应的表示正数;以为负,为正;为负,为正。直到本世纪初,美国数学家亨廷顿(E.V. Huntington,1874.4-1952.11)才开始采用接近现代形式的符号:,逐渐成为现代的形式。 绝对值符号 现在通用的绝对值符号“| |”,是德国数学家外尔斯特拉斯(K.T.W. Weierstrass,1815-1897)在1841年率先引用的,后来为人们所广泛接受。符号“| |”的含义是,在实数范围内 1905年,甘斯用这个符号表示向量的长度,有时把这个长度也就叫做绝对值。外尔斯特拉斯已经指出,复数的绝对值是它的“模”,用向量解释复数,“模”、“绝对值”、“长度”都是一致的。可见甘斯符号的合理性,因而一直沿用到现在。 幻方 将1到的自然数排列成纵横各有n个数的正方形,使每行、每列、有时还包括两条主对角线的n个数的和(或连乘积)都相等[等于],这种排列称为阶幻方,也叫阶纵横图。 4 9 2 3 5 7 8 1 6 纵横图的起源可以追溯到公元前2200多年。相传,我国大禹治水时,发现一个神龟,背上刻有图案,称“为洛书”(图2),表示神赐给他的一种旨意。与此有关的传说具有很强的神秘色彩。上面的这个图案用阿拉伯数码表示,就是一个如下的三阶纵横图: 图2 中国东汉学者郑玄(127-200)注易纬《乾凿度》中有“太一取其数以行九宫,四正四维皆合于十五”,大意是:太一神依照一定顺序巡行于九宫,九个位置的图案所显示出的数字表明太一神巡行的次第。因此古代中国人也称三阶纵横图为九宫数或九宫图。如北周学者甄鸾(535年左右)注《数术记遗》中说:“九宫者,二、四为肩,六、八为足,左三右七,戴九履一,五居中央”。与前面的龟文暗合。 我国历代学者对纵横图都有过许多研究。“纵横图”一词最早出现在南宋杨辉(约十三世纪中叶)所著的《续古摘奇算法》(1275)之中。杨辉在书中还给出了三至十阶的纵横图及其变体共13种。 中世纪的阿拉伯学者对纵横图也有研究。1956年,西安出土了1278年阿拉伯学者扎马鲁丁为西安王推算历法期间用“东阿拉伯数字”所做的铁制六阶纵横图,见图3。用现代的阿拉伯数码表示如图4: 图3 图4 在欧洲,纵横图的造法大约开始于14世纪。1514年,德国著名的大画家兼数学家丢勒(A. Dürer,1471-1528)雕刻了一副名为《忧郁》的钢板画,画中有一个四阶幻方,如下: 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 这个纵横图不但行、列、对角线上的各个数字之和都是34(欧洲人称之为神秘的常数),而且把这个幻方四等分后,得到的每一部分的四个小方图的数字之和也等于34。此外,丢勒还独具匠心,精心巧妙地设计了一个小秘密,即在方图的最下面中间两个数15,14,连在一起恰好是绘画的年代1514,实在是“幻中之幻”。 1878年这个四阶纵横图在英国人傅兰雅传入中国。事实上,200多年前中国的数学家杨辉就已经得到了这个纵横图。数学家欧拉(L. Euler,1707-1783)和凯莱(A. Cayley,1821-1895)都曾指出,纵横图不仅仅是一种数学游戏,也有研究价值。 现在,人们已经发现各种各样的纵横图,如广义幻方,双重幻方、同心幻方、分块幻方、质数幻方、三维幻方等等。中国古人对纵横图的研究是组合数学发展初期的重要内容,现在,纵横图仍然是组合数学的研究课题。
“方程”一词的由来
中国古代数学著作《九章算术》第八卷的卷名为“方程”,这是“方程”一词的最早出处。但古代方程的含义与现代方程的含义有着较大的差别。 本卷的第一题导致一个线性方程组,现代写法如下: 。 28 4 3 31 35 10 36 18 21 24 11 1 7 23 12 17 22 30 8 13 26 19 16 29 5 20 15 14 25 32 27 33 34 6 2 9 中国古人在解题时把数据排成如图5的长方形(图6为现代的写法,即所谓的增广矩阵), 图5
图6 《九章算术》的作者称为方程,这种解题方法称为“方程术”,这是汉语“方程”一词的开始。此题的术文记录了两千年前我国列线性方程组和解线性方程组的全过程,它相当于严谨的矩阵初等变换法。 方程术的基本思想是顺序消元,把增广矩阵一再用初等变换进行变换,使系数矩阵成为单位矩阵,从而得解。这种方法就是现在的高斯消去法。 现代意义上的列方程和解方程在我国古代称为“天元术”,这个方法大约在十三世纪出现在我国北方的数学界。李冶的《侧圆海镜》,《益古演段》,朱世杰(1300前后)《算学启蒙》、《四元玉鉴》都是十三、十四世纪的著作,他们用“天元术”来解决列方程的问题。 什么是天元术?首先根据题意“立天元一为某某”,与现代数学中“设 为某某”意义相同。其次再根据问题所设条件列出两个相等的多项式,两者相减,就得出一个一端为零的方程。 多项式的天元术记法相当于现代所谓的分离系数法:多项式按其各项幂的次数高低,自上而下直行书写,用中国数码字只记其相应系数,在一次项右边写一元字,常数项右边写一太字。例如,多项式的写法记为: 中国古代求得的多项式方程的解都是正的数值解,多项式方程数值解法的历史可以追溯到《九章算术》中的开方术。在筹算开平方和开立方的基础上,我国从十一世纪开始逐渐摸索到数值解高次方程的一般规律,得到所谓的“增乘开方法”。增乘开方法至秦九邵(约1202—1261)的《数术九章》而大备,在《侧圆海镜》中,李冶对此方法有新的创见。 在西方,数学家霍纳(W.G. Horner,1786—1837)也得到了该方法,但是已经比秦九邵晚500多年了。
古埃及纸草书 非洲东北部的尼罗河流域,是古代文明的发祥地之一,尼罗河孕育了古埃及的文化。在公元前3500—3000年间,在尼罗河下游建立了一个统一的国家,以后埃及的历史主要按统治的朝代命名。古埃及人在长期的生产实践和与自然斗争的过程中,逐渐掌握了丰富的科学知识。土地的丈量、商品的交易以及大规模宫殿和金字塔的建造,无疑都要使用较高深的数学。 目前,我们对古埃及数学的认识,主要根据两本用僧侣文写成的纸草书:一本是伦敦本,一本是莫斯科本。 1858年,在底比斯的拉美西斯神庙附近的一座小建筑物的废墟中发现了一卷纸草书,为英国人莱因德所购得,他死后归伦敦大英博物馆所有。后来称为“莱因德纸草书”,抄写者为阿梅斯,原作者不详。莱因德纸草书产生的年代,有好几种说法,多数学者认为是公元前1650年。 另一本叫做“莫斯科纸草书”,由俄罗斯收藏者戈列尼谢夫在1893年购得。1912年收藏在莫斯科国立造型艺术博物馆。这本纸草书的产生年代大约在公元前1850左右,比莱因德纸草书的产生要晚,但重性要稍逊于莱因德纸草书。
丢番图 丢番图是古希腊数学家,生平不详。主要活动年代是根据11世纪拜占廷学者普赛勒的一封信来确定的,其中提到丢番图在三世纪中叶的某些学术交往。另一线索见于四世纪希腊文选上的一首脍炙人口的短诗:“丢番图的一生,幼年占六分之一,青少年占十二分之一,又过了七分之一方结婚,五年后得子,子先父4年而卒,仅为父寿之半”。由此可推知他终年为84岁。 《算术》一书是丢番图的代表作,是数学历史上的一部重要著作。丢番图的特点是使问题的求解完全脱离了几何形式,在希腊数学中独树一帜。《算术》一书成为世界最早的系统数学专著之一。对后来的阿拉伯数学,文艺复兴时期的意大利数学乃至整个欧洲的数学产生了巨大的影响,也为包括韦达、费马、高斯在内的许多数学家提供了创作源泉。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-17
展开全部
数学:
知识梳理:
⑴正数与负数:负数产生的必要性;具有相反意义的量。
⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
⑶相反数、倒数、绝对值:
只有符号不同的两个数是互为相反数,a的相反数为-a;
一个数除以1所得的商是这个数的倒数,零没有倒数;
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
⑷数轴:原点、正方向、单位长度是数轴的三要素。
⑸有理数的大小比较:
方法一:零大于一切正数,而小于一切负数;
两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
实 数
一、 知识梳理:
1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)
2、实数的有关概念:
(1)平方根:一般地,如果一个数的平方等于 ,那么这个数叫做 的平方根.正数有两个平方根,负数没有平方根,0的平方根是0
(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.
(3)立方根:一个数的立方等于a,这个数叫做a的立方根。
3、实数与数轴上的点一一对应。会在数轴上表示有些无理数
知识要点】
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b的解的情况:
(1)当a≠0时,ax=b有唯一的解
(2)当a=0,b≠0时,ax=b无解
(3)当a=0,b=0时,ax=b有无穷多个解【
知识要点:
1.因式分解定义:把一个多项式化成几个_______式乘积的形式.因式分解与整式的乘法是互为________.
2.因式分解的基本方法:
(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.
(2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____,
a3+b3=____ ____,a3-b3=___ ____.
3.因式分解的一般步骤
先看有没有公因式,若有立即提出;然后看看是几项式,若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止.
一,知识梳理:
1、 有理数的加法、减法、乘法、除法、乘方运算法则、混合运算
2、 运算律:交换律、结合律、分配律,去括号法则
(1)有理数的加法法则:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:
① 两数相乘,同号得正,异号得负,并把绝对值相乘;
② 任何数与零相乘都得零;
③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④ 几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
3、 科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。如:304000=3
4、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。如:把84960保留两个有效数字得:
5、计算器的使用
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
知识点整理:1、相交线
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角 ∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等即∠1=∠2
邻补角 ∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.数的分类及概念
数系表:
实数
无理数(无限不循环小数)
有理数
正分数
负分数
正整数
0
负整数
(有限或无限循环性数)
整数
分数
正无理数
负无理数
说明:“分类”的原则:
1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
│a│
(a≥0)
(a为一切实数)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
a(a≥0)
-a(a<0)
│a│=
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. a
x
b
已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
一、 单项式
多项式
整式
分式样
有理式
无理式
代数式
重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
a·a…a=
n个
9.指数
⑴ ( —幂,乘方运算)
① a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数)
知识梳理:
⑴正数与负数:负数产生的必要性;具有相反意义的量。
⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
⑶相反数、倒数、绝对值:
只有符号不同的两个数是互为相反数,a的相反数为-a;
一个数除以1所得的商是这个数的倒数,零没有倒数;
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
⑷数轴:原点、正方向、单位长度是数轴的三要素。
⑸有理数的大小比较:
方法一:零大于一切正数,而小于一切负数;
两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
实 数
一、 知识梳理:
1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)
2、实数的有关概念:
(1)平方根:一般地,如果一个数的平方等于 ,那么这个数叫做 的平方根.正数有两个平方根,负数没有平方根,0的平方根是0
(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.
(3)立方根:一个数的立方等于a,这个数叫做a的立方根。
3、实数与数轴上的点一一对应。会在数轴上表示有些无理数
知识要点】
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b的解的情况:
(1)当a≠0时,ax=b有唯一的解
(2)当a=0,b≠0时,ax=b无解
(3)当a=0,b=0时,ax=b有无穷多个解【
知识要点:
1.因式分解定义:把一个多项式化成几个_______式乘积的形式.因式分解与整式的乘法是互为________.
2.因式分解的基本方法:
(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.
(2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____,
a3+b3=____ ____,a3-b3=___ ____.
3.因式分解的一般步骤
先看有没有公因式,若有立即提出;然后看看是几项式,若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止.
一,知识梳理:
1、 有理数的加法、减法、乘法、除法、乘方运算法则、混合运算
2、 运算律:交换律、结合律、分配律,去括号法则
(1)有理数的加法法则:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:
① 两数相乘,同号得正,异号得负,并把绝对值相乘;
② 任何数与零相乘都得零;
③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④ 几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
3、 科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。如:304000=3
4、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。如:把84960保留两个有效数字得:
5、计算器的使用
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
知识点整理:1、相交线
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角 ∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等即∠1=∠2
邻补角 ∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.数的分类及概念
数系表:
实数
无理数(无限不循环小数)
有理数
正分数
负分数
正整数
0
负整数
(有限或无限循环性数)
整数
分数
正无理数
负无理数
说明:“分类”的原则:
1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
│a│
(a≥0)
(a为一切实数)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
a(a≥0)
-a(a<0)
│a│=
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. a
x
b
已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
一、 单项式
多项式
整式
分式样
有理式
无理式
代数式
重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
a·a…a=
n个
9.指数
⑴ ( —幂,乘方运算)
① a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |