设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13
1个回答
展开全部
(1).a3+b5=a1+2d+b1q^4=21
a5+b3=a1+4d+b1q^2=13
d=2
q=2
an=1+2(n-1)=2n-1
bn=2^(n-1)
(2)
cn=anbn=(2n-1)*2^(n-1)
c1=1*2^0
c2=3*2^1
c3=5*2^2
....cn=(2n-1)*2^(n-1)
Sn =c1+c2+c3+......cn
=1*2^0+3*2^1+5*2^2+.....+(2n-1)*2^(n-1)
2Sn= 1*2^1+3*2^2+5*2^3+......+(2n-1)*2^n
2Sn-Sn=Sn=-1-2*2^1-2*2^2-2*2^3-.......-2*2^(n-1)+(2n-1)*2^n
Sn=-1-2(2^1+2^2+2^3+....+2^(n-1))+(2n-1)*2^n
=-1-2(2^n-2)+(2n-1)*2^n
=3-2^(n+1)+(2n-1)*2^n
=3+(2n-3)*2^n
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
a5+b3=a1+4d+b1q^2=13
d=2
q=2
an=1+2(n-1)=2n-1
bn=2^(n-1)
(2)
cn=anbn=(2n-1)*2^(n-1)
c1=1*2^0
c2=3*2^1
c3=5*2^2
....cn=(2n-1)*2^(n-1)
Sn =c1+c2+c3+......cn
=1*2^0+3*2^1+5*2^2+.....+(2n-1)*2^(n-1)
2Sn= 1*2^1+3*2^2+5*2^3+......+(2n-1)*2^n
2Sn-Sn=Sn=-1-2*2^1-2*2^2-2*2^3-.......-2*2^(n-1)+(2n-1)*2^n
Sn=-1-2(2^1+2^2+2^3+....+2^(n-1))+(2n-1)*2^n
=-1-2(2^n-2)+(2n-1)*2^n
=3-2^(n+1)+(2n-1)*2^n
=3+(2n-3)*2^n
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询