已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
1个回答
展开全部
a(n+1)=4(n+1).an/(3an+n)
3an.a(n+1) + na(n+1) = 4(n+1)an
3 + n/an= 4(n+1)/a(n+1)
4(n+1) [ 1/a(n+1) -1/(n+1) ]= n[ 1/an -(1/n)]
[ 1/a(n+1) -(1/(n+1) ]/[ 1/an -(1/n)] = (1/4)[n/(n+1)]
[ 1/an -(1/n)]/[ 1/a(n-1) -(1/(n-1) ] = (1/4)[(n-1)/n]
[ 1/an -(1/n)]/[ 1/a1 -1/1 ] = (1/4)^(n-1) . (1/n)
1/an -(1/n) = -(1/n).(1/4)^n
1/an = (1/n) [ 1- (1/4)^n ]
an = n/[ 1- (1/4)^n]
3an.a(n+1) + na(n+1) = 4(n+1)an
3 + n/an= 4(n+1)/a(n+1)
4(n+1) [ 1/a(n+1) -1/(n+1) ]= n[ 1/an -(1/n)]
[ 1/a(n+1) -(1/(n+1) ]/[ 1/an -(1/n)] = (1/4)[n/(n+1)]
[ 1/an -(1/n)]/[ 1/a(n-1) -(1/(n-1) ] = (1/4)[(n-1)/n]
[ 1/an -(1/n)]/[ 1/a1 -1/1 ] = (1/4)^(n-1) . (1/n)
1/an -(1/n) = -(1/n).(1/4)^n
1/an = (1/n) [ 1- (1/4)^n ]
an = n/[ 1- (1/4)^n]
追问
我早就做出来了,不过还是很感谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询