2个回答
2013-10-20
展开全部
换底公式:log以a为底b的对数=lgb/lga(lga是log以10为底a的对数).公式lg(a*b)=lga+lgb, lg(a/b)=lga-lgb, lg(a^b)=b*lga.
原式=[(1-lg3/lg6)^2+(lg2/lg6)*(lg18/lg6)]/(lg4/lg6)
=[1-(2*lg3)/lg6+(lg3)^2/(lg6)^2+(lg2*lg18)/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3^2+lg2*lg18)/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3^2+lg2*(lg2+2*lg3)))/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3+lg2)^2/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg6)^2/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+1]*(lg6/lg4)
=2*(lg6/lg4)-(2*lg3)/lg4
=(2*lg6)/(2*lg2)-(2*lg3)/(2*lg2)
=lg6/lg2-lg3/lg2
=(lg6-lg3)/lg2=lg(6/3)/lg2=lg2/lg2=1
原式=[(1-lg3/lg6)^2+(lg2/lg6)*(lg18/lg6)]/(lg4/lg6)
=[1-(2*lg3)/lg6+(lg3)^2/(lg6)^2+(lg2*lg18)/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3^2+lg2*lg18)/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3^2+lg2*(lg2+2*lg3)))/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg3+lg2)^2/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+(lg6)^2/(lg6)^2]*(lg6/lg4)
=[1-(2*lg3)/lg6+1]*(lg6/lg4)
=2*(lg6/lg4)-(2*lg3)/lg4
=(2*lg6)/(2*lg2)-(2*lg3)/(2*lg2)
=lg6/lg2-lg3/lg2
=(lg6-lg3)/lg2=lg(6/3)/lg2=lg2/lg2=1
2013-10-20
展开全部
1-log(6)3=log(6)(6/3)=log(6)2log(6)18=log(6)(6*3)=1+log(6)3=1+log(6)(6/2)=1+1-log(6)2=2-log(6)2(1-log(6)3)^2=[log(6)2]^2log(6)2*log(6)18=2log(6)2-[log(6)2]^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |