已知a,b属于(3兀4,兀),sin(a+b)=-3/5,sin(b-兀/4)=12/13,则cos(a+兀/4)=?
1个回答
2013-10-21
展开全部
∵a,b∈(3π/4,π)
∴a+b∈(3π/2,2π),b-π/4∈(π/2,3π/4)
又∵sin(a+b)=-3/5
∴cos(a+b)=4/5
∵sin(b-π/4)=12/13
∴cos(b-π/4)=-5/13
∴cos(a+π/4)=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=(4/5)*(-5/13)+(-3/5)*(12/13)
=-56/65
∴a+b∈(3π/2,2π),b-π/4∈(π/2,3π/4)
又∵sin(a+b)=-3/5
∴cos(a+b)=4/5
∵sin(b-π/4)=12/13
∴cos(b-π/4)=-5/13
∴cos(a+π/4)=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=(4/5)*(-5/13)+(-3/5)*(12/13)
=-56/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询