推荐于2018-04-15
展开全部
一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。
解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],
现在假设f(a)<0,f(b)>0,a<b
①如果f[(a+b)/2]=0,该点就是零点,
如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用
中点函数值判断。
如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用
中点函数值判断。
这样就可以不断接近零点。
像求:|f(x)|<10^-5 f(x)=2x^3-4x^2+3x-6
#include"iostream"
#include"stdio.h"
#include"math.h"
#define null 0
double fx(double); //f(x)函数
void main()
{
double xa(null),xb(null),xc(null);
do
{
printf("请输入一个范围x0 x1:");
std::cin>>xa>>xb; //输入xa xb的值
printf("%f %f",xa,xb);
}
while(fx(xa)*fx(xb)>=0); //判断输入范围内是否包含函数值0
do
{
if(fx((xc=(xa+xb)/2))*fx(xb)<0) //二分法判断函数值包含0的X取值区间
{
xa=xc;
}
else
{
xb=xc;
}
}
while(fx(xc)>pow(10.0,-5)||fx(xc)<-1*pow(10.0,-5));//判断x根是否在接近函数值0的精确范围内
printf("\n 得数为:%f",xc);
}
double fx(double x)
{
return(2.0*pow(x,3)-4.0*pow(x,2)+3*x-6.0);
}
解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],
现在假设f(a)<0,f(b)>0,a<b
①如果f[(a+b)/2]=0,该点就是零点,
如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用
中点函数值判断。
如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用
中点函数值判断。
这样就可以不断接近零点。
像求:|f(x)|<10^-5 f(x)=2x^3-4x^2+3x-6
#include"iostream"
#include"stdio.h"
#include"math.h"
#define null 0
double fx(double); //f(x)函数
void main()
{
double xa(null),xb(null),xc(null);
do
{
printf("请输入一个范围x0 x1:");
std::cin>>xa>>xb; //输入xa xb的值
printf("%f %f",xa,xb);
}
while(fx(xa)*fx(xb)>=0); //判断输入范围内是否包含函数值0
do
{
if(fx((xc=(xa+xb)/2))*fx(xb)<0) //二分法判断函数值包含0的X取值区间
{
xa=xc;
}
else
{
xb=xc;
}
}
while(fx(xc)>pow(10.0,-5)||fx(xc)<-1*pow(10.0,-5));//判断x根是否在接近函数值0的精确范围内
printf("\n 得数为:%f",xc);
}
double fx(double x)
{
return(2.0*pow(x,3)-4.0*pow(x,2)+3*x-6.0);
}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询