函数的奇偶性、周期性

现在书上只讲了函数的单调性,但做题却总要用到其他性质,谁知道这些性质的定义、用法,给个详细点的回答,谢!... 现在书上只讲了函数的单调性,但做题却总要用到其他性质,谁知道这些性质的定义、用法,给个详细点的回答,谢! 展开
匿名用户
2013-10-19
展开全部
 一、函数的奇偶性

  1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

  对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

  2.性质:

  (1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;

  (2) f(x),g(x)的定义域为D;

  (3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;

  (4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;

  (5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;

  (6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。

  3.判断方法:

  (1)定义法

  (2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;

  f(-x)-f(x)=0,f(x)为偶函数。

  4.拓展延伸:

  (1)一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

  (2)一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

  二、周期性:

  1.定义:对于函数y=f(x),如果存在一个非零常数T,使得当自变量x取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。

  2.图象特点:

  将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。

  3.函数图象的对称性与周期性的关系:

  (1)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)

  (2)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=-f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)

  (3)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:4|a-b|)

  典型例题

  例1:判断下列函数的奇偶性:

  (1)f(x)=(x-1)·■

  解:函数的定义域为x∈{x|-1≤x<1}

  函数f(x)=(x-1)·■为∴f(x)非奇非偶函数

  (2) f(x)=loga(-x+-)

  解:x∈R

  f(-x)=loga(x+-

  =loga-

  =-loga(-x+-)=-f(x)

  ∴f(x)为奇函数

  (3)f(x)=x·(-+-)

  解:x∈{x∈R|x≠0}

  f(-x)-f(x)=-x(-+-)-x(-+-)

  =-x(-+-+1)=0

  ∴f(x)为偶函数

  (4)f(x)=-

  解:1+cosx+sinx≠0

  sin(x+-)≠--,x∈{x|x≠2k-且x≠2k--,k∈R}

  定义域不关于原点对称,∴f(x)为非奇非偶函数

  说明:

  1.判断函数的奇偶性首先要检验定义域是否关于原点对称。特别应注意,求解定义域时,不能化简解析式后再求解。

  2.在判断是否有f(-x)=-f(x)或f(-x)=f(x)成立时,必要时可使用等价变形形式:f(-x)±f(x)=0

  例2:(1)已知:f(x)是奇函数,且x>0时f(x)=x|x-2|

  求x<0的解析式

  解:设x<0,则-x>0

  -,

  说明:1.利用函数的奇偶性求解析式,要将自变量x设在所求的范围内。

  2.转化带入利用定义构造方程。

  (2)定义在R上的奇函数f(x)且满足f(3+x)=f(3-x),若x∈(0,3),f(x)=2x

  求:当x∈(-6,-3)时,f(x)的解析式。

  解:x∈(-6,-3) -x∈(3,6),6-(-x)∈(0,3)

  -

  ∴f(x)=-2x+6

  说明:1.合理分解题意是关键。

  2.此题还可以应用周期性进行求解。

  例3:已知:函数f(x)的定义域为R,且满足f(x+2)=-f(x)

  (1)求证:f(x)为周期函数;

  (2)若f(x)为奇函数,且当0≤x≤1时,f(x)=-x,求使得f(x)=--的所有x。

  (1)解:-

  ∴f(x)=f(x+4)

  f(x)为周期是4的周期函数。

  (2)解:x∈[-1,0],-x∈[0,1]

  -

  ∴f(x)=-x,x∈[-1,0]

  ∴f(x)=-x,x∈[-1,1]

  x∈(1,3),∴-1

  -

  ∴f(x)=--(x-2),x∈[1,3]

  -

  x∈[-1,3),f(x)=--,x=-1

  ∴x=4n-1,n∈Z
匿名用户
2013-10-19
展开全部
周期:若对于定义域内任意的x,有f(x)=f(x+a),那么a为函数的周期
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-10-19
展开全部
奇偶性:1.如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。
2.如果函数f(x)满足f(-x)=f(x)且f(-x)=-f(x),则称函数f(x)既是奇函数又是偶函数。
3.若函数f(x)满足f(-x)≠f(x)且f(-x)≠-f(x),则称函数f(x)为非奇非偶函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-10-19
展开全部
定义域含0的奇函数有f(0)=0(可用于求参数);若所给函数的解析式较复杂,应先化简,再判断其奇偶性。 奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

注意:1.判断函数奇偶性之前务必先考查定义域是否关于原点对称,即:若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称;反之,函数定义域不关于原点对称,该函数无奇偶性。确定奇偶性的常用方法有:定义法、图想法等。
2.函数单调是函数有反函数的一个充分非必要条件。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式