A是原矩阵,H是A的最简矩阵。
若有一个矩阵满足所有的非零行的第一个非零元素均为1,且其所在列中的其他元素都是零。任何一个非零矩阵总可以经过有限次初等变换为阶梯形矩阵和最简阶梯形矩阵。
矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,变化为标准形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。
扩展资料:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。
关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
参考资料来源:百度百科-最简形矩阵
2024-06-06 广告
A是原矩阵,H是A的最简矩阵。
若有一个矩阵满足所有的非零行的第一个非零元素均为1,且其所在列中的其他元素都是零。任何一个非零矩阵总可以经过有限次初等变换为阶梯形矩阵和最简阶梯形矩阵。
矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,变化为标准形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。
扩展资料:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要。
参考资料来源:百度百科-最简形矩阵
V^⊥这个记号里V表示一个线性(子)空间,V^⊥表示V的正交补空间
(一般来讲对矩阵比较少用A^⊥的记号,如果用到的话都会给出定义,因为这个不算很通用的记号)
2013-10-20