求高中与log有关的公式!

匿名用户
2013-10-21
展开全部
用^表示乘方,用log(a)(b)表示以a为底,b的对数  *表示乘号,/表示除号  定义式:  若a^n=b(a>0且a≠1)  则n=log(a)(b)  基本性质:  1.a^(log(a)(b))=b  2.log(a)(MN)=log(a)(M)+log(a)(N);  3.log(a)(M/N)=log(a)(M)-log(a)(N);  4.log(a)(M^n)=nlog(a)(M)  推导  1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)  2.  MN=M*N  由基本性质1(换掉M和N)  a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]  由指数的性质  a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}  又因为指数函数是单调函数,所以  log(a)(MN)=log(a)(M)+log(a)(N)  3.与2类似处理  MN=M/N  由基本性质1(换掉M和N)  a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]  由指数的性质  a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}  又因为指数函数是单调函数,所以  log(a)(M/N)=log(a)(M)-log(a)(N)  4.与2类似处理  M^n=M^n  由基本性质1(换掉M)  a^[log(a)(M^n)]={a^[log(a)(M)]}^n  由指数的性质  a^[log(a)(M^n)]=a^{[log(a)(M)]*n}  又因为指数函数是单调函数,所以  log(a)(M^n)=nlog(a)(M)  其他性质:  性质一:换底公式  log(a)(N)=log(b)(N)/log(b)(a)  推导如下  N=a^[log(a)(N)]  a=b^[log(b)(a)]  综合两式可得  N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}  又因为N=b^[log(b)(N)]  所以  b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}  所以  log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}  所以log(a)(N)=log(b)(N)/log(b)(a)  性质二:(不知道什么名字)  log(a^n)(b^m)=m/n*[log(a)(b)]  推导如下  由换底公式[lnx是log(e)(x),e称作自然对数的底]  log(a^n)(b^m)=ln(a^n)/ln(b^n)  由基本性质4可得  log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}  再由换底公式  log(a^n)(b^m)=m/n*[log(a)(b)]  --------------------------------------------(性质及推导完)  公式三:  log(a)(b)=1/log(b)(a)  证明如下:  由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1  =1/log(b)(a)  还可变形得:  log(a)(b)*log(b)(a)=1  三角函数的和差化积公式  sinα+sinβ=2sin(α+β)/2·cos(α-β)/2  sinα-sinβ=2cos(α+β)/2·sin(α-β)/2  cosα+cosβ=2cos(α+β)/2·cos(α-β)/2  cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2  三角函数的积化和差公式  sinα·cosβ=1/2[sin(α+β)+sin(α-β)]  cosα·sinβ=1/2[sin(α+β)-sin(α-β)]  cosα·cosβ=1/2[cos(α+β)+cos(α-β)]  sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]
匿名用户
2013-10-21
展开全部
logA logB=logAB.n*logA=logA^n.log(A/B)=logA-logB
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式