怎么求解一元二次方程组
一元二次方程的一般式为aX^2+bX+c=0(a≠0),解一元二次方程的原则是先“降次”,将原方程转化为一元一次方程,再解一元一次方程即可。解一元二次方程的一般方法有四种:直接开平方法,因式分解法;配方法;公式法。
1.直接开平方法:先将原方程变形为(x-m)2=n (n≥0),再开方得x=m±√n,解得x1=,x2=m-√n。
如:(x-4)^2=9,x-4=±3,x1=7;x2=1
2.因式分解法:把方程变形为一元二次方程的一般式aX^2+bX+c=0,右边是零,把左边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。因式分解的方法有提取公因式法,十字相乘法,公式法等。
一般步骤是:(1) 如果各项有公因式时,应先提取公因式;
如:(1).提取公因式法:3x^2-5x=0,提取公因式x,得到x(3x-5)=0,解得x1=0,x2=5/3
(2) 如果多项式的各项没有公因式,则考虑是否能用公式法;公式法就是把乘法公式反过来用,就可以把某些多项式分解因式如:9x^2-6x+1=0,反过来用平方差公式得:(3x-1)^2=0,解得:x1=x2=1/3
运用公式法必须熟记几个公式:如平方差,完全平方公式,立方差和立方和及完全立方公式等。
(3) 对于二次三项式的因式分解,可考虑用十字相乘法分解;2.十字相乘法:x^2-2x-3=0, 1 1
1 -3 对角线交叉相乘、再相加,得到的数与一次项系 数相等即可,若不等则换数再试
(x+1)(x-3)=0,解x+1=0,x-3=0,最后解出方程的解。
(4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。3.配方法:
步骤:一除:方程两边同时除以二次项系数,使二次项系数为1
二配:根据X^2+b/ax配常数项,使之成为完全平方;
三成方:左边配方后变成完全平方形式(x+b/2a)^2=(b^2-4ac)/4a^2
四求解:根据平方根定义求出方程的解。
4.求根公式法:把原方程化成一元二次方程的一般形式,以便确定系数a, b, c。在用公式前应先计算判别式的值,以便判断方程△=b2-4ac的值,是否有解。当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0),就可得到方程的根。如:解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0
则:a=2, b=-8, c=5
△=b^2-4ac=(-8)^2-4×2×5=64-40=24>0
∴x=(-b±√b^2-4ac)/2a,代人数值
∴原方程的解为x1= ,x2=解一元二次方程,不管是哪一种方法都需要多想多练,拿到题不要急于做,应该先仔细观察它符合哪种情况,在根据相应的方法去解。
希望对你的学习有所帮助!
2024-04-02 广告
2013-10-20
2.配方: X^2-2X-3=(x-1)^2-4=0 (x-1)=±2 X=3 X=-1
3.求根公式: ax^2+bx+c=0 x=[-b±√(b^2-4ac)] / 2a
一元二次方程组有根的条件是 △= (b^2-4ac)≥0 也就是根号下的数要大于等于0