函数y=xcosx在(-∞,+∞)内是否有界?这个函数是否为x→+∞时的无穷大?为什么?

这是我们大一的高数题。解答的时候最好多讲讲有界与无界的问题,还有无穷大的判断方法... 这是我们大一的高数题。解答的时候最好多讲讲有界与无界的问题,还有无穷大的判断方法 展开
 我来答
robin_2006
2013-10-21 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8486万
展开全部
x→+∞时,f(x)是无穷大的定义是:对于任意大的正数M,存在正数X,对于任意的x>X,恒有|f(x)|>M。
分析:x很大时,始终存在使得cosx=0的x,所以|f(x)|>M不可能恒成立。
把无穷大的定义否定,得到“不是无穷大”的定义:存在正数M,对于任意的正数X,存在x>X,但是|f(x)|≤M。
过程:
对于正数M=1,不管正数X多大,存在正整数n,使得nπ+π/2>X,但|f(nπ+π/2)|=0<1。所以f(x)=xcosx不是x→+∞时的无穷大。

--------
一般对于无界、无穷大可以使用函数极限与数列极限的关系来说明:如果存在数列Xn,使得f(Xn)是无穷大,则f(x)无界。如果存在数列yn,使得f(yn)的极限有限,则f(x)不是无穷大。
茹翊神谕者

2021-02-24 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1643万
展开全部

用定义证明即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-10-20
展开全部
按照无穷大函数的定义.用反证法.假设xcosx是x→+∞时的无穷大.则对任意给定的正数f(m)(无论多么大),存在正数f(m)=|mcosm|,当x>m时,有|xcosx |>f(m)但是 ,无论X取何实数,|xcosx|>f(m)式不恒成立,因为|cosx|<1.因此假设不成立。所以xcosx不是x→+∞时的无穷大从数形结合解释。事实上,当x充分大时, xcosx的振幅充分大.当x→+∞时,它在振幅趋于充分大的状态下,上下震荡,而不趋于某一种状态。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式