数学题:试求(2+1)(2²+1)(2的四次方+1)...(2的2n次方+1)+1的值.请详细写出解答过程!!!!
1个回答
展开全部
(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^2n+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^2n+1) 原式乘以1,即乘以(2-1),值不变
=(2^2-1)(2^2+1)(2^4+1)...(2^2n+1) 往下递次使用平方差公式(a-1)(a+1)=a^2-1
=(2^4-1)(2^4+1)(2^8+1)...(2^2n+1)
=(2^8-1)(2^8+1)...(2^2n+1)
=(2^2n-1)(2^2n+1)
=2^4n-1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^2n+1) 原式乘以1,即乘以(2-1),值不变
=(2^2-1)(2^2+1)(2^4+1)...(2^2n+1) 往下递次使用平方差公式(a-1)(a+1)=a^2-1
=(2^4-1)(2^4+1)(2^8+1)...(2^2n+1)
=(2^8-1)(2^8+1)...(2^2n+1)
=(2^2n-1)(2^2n+1)
=2^4n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询