1个回答
2013-10-21
展开全部
OP交AC弧于点E,交BD弧于点F,连接AE,CE,BF,DF,
因为OP平分∠BPD,
所以∠BOF=∠DOF,则DF弧=BF弧,所以BF=DF,
所以三角形DPF与三角形BPF全等(根据边角边定理)
同理可证三角形APF与三角形CPF全等,
所以可得出AP=CP,DP=BP,
因为∠APD与∠CPB为对角,
所以∠APD=∠CPB,
所以三角形APD与三角形CPB全等,
所以AD=CB,
所以AD弧=BC弧
因为OP平分∠BPD,
所以∠BOF=∠DOF,则DF弧=BF弧,所以BF=DF,
所以三角形DPF与三角形BPF全等(根据边角边定理)
同理可证三角形APF与三角形CPF全等,
所以可得出AP=CP,DP=BP,
因为∠APD与∠CPB为对角,
所以∠APD=∠CPB,
所以三角形APD与三角形CPB全等,
所以AD=CB,
所以AD弧=BC弧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询